山東省濟(jì)南市部分學(xué)校2022年數(shù)學(xué)九上期末達(dá)標(biāo)檢測試題含解析_第1頁
山東省濟(jì)南市部分學(xué)校2022年數(shù)學(xué)九上期末達(dá)標(biāo)檢測試題含解析_第2頁
山東省濟(jì)南市部分學(xué)校2022年數(shù)學(xué)九上期末達(dá)標(biāo)檢測試題含解析_第3頁
山東省濟(jì)南市部分學(xué)校2022年數(shù)學(xué)九上期末達(dá)標(biāo)檢測試題含解析_第4頁
山東省濟(jì)南市部分學(xué)校2022年數(shù)學(xué)九上期末達(dá)標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.中國“一帶一路”戰(zhàn)略給沿線國家和地區(qū)帶來很大的經(jīng)濟(jì)效益,沿線某地區(qū)居民2016年人均年收入300美元,預(yù)計2018年人均年收入將達(dá)到950美元,設(shè)2016年到2018年該地區(qū)居民人均年收入平均增長率為x,可列方程為()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=9502.下列各數(shù)中,屬于無理數(shù)的是()A. B. C. D.3.如圖,函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點B(2,0),與函數(shù)y=2x的圖象交于點A,則不等式0<kx+b<2x的解集為()A. B. C. D.4.下列運算中,結(jié)果正確的是()A. B. C. D.5.關(guān)于的一元二次方程有兩個不相等的實數(shù)根,則實數(shù)的取值范圍是A. B. C. D.6.在平面直角坐標(biāo)系中,△ABC與△A1B1C1位似,位似中心是原點O,若△ABC與△A1B1C1的相似比為1:2,且點A的坐標(biāo)是(1,3),則它的對應(yīng)點A1的坐標(biāo)是()A.(-3,-1) B.(-2,-6) C.(2,6)或(-2,-6) D.(-1,-3)7.小明將如圖兩水平線l1、l2的其中一條當(dāng)成x軸,且向右為正方向;兩條直線l3、l4的其中一條當(dāng)成y軸,且向上為正方向,并在此坐標(biāo)平面中畫出二次函數(shù)y=ax2﹣2a2x+1的圖象,則()A.l1為x軸,l3為y軸 B.l2為x軸,l3為y軸C.l1為x軸,l4為y軸 D.l2為x軸,l4為y軸8.如圖在正方形網(wǎng)格中,小正方形的邊長均為1,三角形的頂點都在格點上,則與△ABC相似的三角形所在的網(wǎng)格圖形是()A. B. C. D.9.關(guān)于x的一元二次方程x2﹣2x+m=0有兩個不相等的實數(shù)根,則實數(shù)m的取值范圍是()A.m<3 B.m>3 C.m≤3 D.m≥310.在同一直角坐標(biāo)系中,反比例函數(shù)y=與一次函數(shù)y=ax+b的圖象可能是()A. B.C. D.二、填空題(每小題3分,共24分)11.若,則=_____.12.兩塊大小相同,含有30°角的三角板如圖水平放置,將△CDE繞點C按逆時針方向旋轉(zhuǎn),當(dāng)點E的對應(yīng)點E′恰好落在AB上時,△CDE旋轉(zhuǎn)的角度是______度.13.如圖,在正方形ABCD的外側(cè),作等邊△ABE,則∠BFC=_________°14.反比例函數(shù)()的圖象如圖所示,點為圖象上的一點,過點作軸,軸,若四邊形的面積為4,則的值為______.15.圓錐的底面半徑為6,母線長為10,則圓錐的側(cè)面積為__________.16.如圖,在中,,,延長至點,使,則________.17.一元二次方程x2﹣4x+4=0的解是________.18.在Rt△ABC中,斜邊AB=4,∠B=60°,將△ABC繞點B旋轉(zhuǎn)60°,頂點C運動的路線長是(結(jié)果保留π).三、解答題(共66分)19.(10分)如圖,是的直徑,,,連接交于點.(1)求證:是的切線;(2)若,求的長.20.(6分)在正方形中,點是直線上動點,以為邊作正方形,所在直線與所在直線交于點,連接.(1)如圖1,當(dāng)點在邊上時,延長交于點,與交于點,連接.①求證:;②若,求的值;(2)當(dāng)正方形的邊長為4,時,請直接寫出的長.21.(6分)如圖,中,,,平分,交軸于點,點是軸上一點,經(jīng)過點、,與軸交于點,過點作,垂足為,的延長線交軸于點,(1)求證:為的切線;(2)求的半徑.22.(8分)如圖,拋物線y=﹣x2+2x+6交x軸于A,B兩點(點A在點B的右側(cè)),交y軸于點C,頂點為D,對稱軸分別交x軸、線段AC于點E、F.(1)求拋物線的對稱軸及點A的坐標(biāo);(2)連結(jié)AD,CD,求△ACD的面積;(3)設(shè)動點P從點D出發(fā),沿線段DE勻速向終點E運動,取△ACD一邊的兩端點和點P,若以這三點為頂點的三角形是等腰三角形,且P為頂角頂點,求所有滿足條件的點P的坐標(biāo).23.(8分)如圖,BD、CE是的高.(1)求證:;(2)若BD=8,AD=6,DE=5,求BC的長.24.(8分)已知,,,(如圖),點,分別為射線上的動點(點C、E都不與點B重合),連接AC、AE使得,射線交射線于點,設(shè),.(1)如圖1,當(dāng)時,求AF的長.(2)當(dāng)點在點的右側(cè)時,求關(guān)于的函數(shù)關(guān)系式,并寫出函數(shù)的定義域.(3)連接交于點,若是等腰三角形,直接寫出的值.25.(10分)如圖,四邊形ABCD內(nèi)接于⊙O,AC為⊙O的直徑,D為的中點,過點D作DE∥AC,交BC的延長線于點E.(1)判斷DE與⊙O的位置關(guān)系,并說明理由;(2)若CE=,AB=6,求⊙O的半徑.26.(10分)如圖,在△ABC中,∠CAB=90°,D是邊BC上一點,,E為線段AD的中點,連結(jié)CE并延長交AB于點F.(1)求證:AD⊥BC.(2)若AF:BF=1:3,求證:CD:DB=1:2.

參考答案一、選擇題(每小題3分,共30分)1、D【解析】設(shè)2016年到2018年該地區(qū)居民年人均收入平均增長率為x,那么根據(jù)題意得2018年年收入為:300(1+x)2,列出方程為:300(1+x)2=1.故選D.2、A【分析】根據(jù)無理數(shù)的三種形式:①開方開不盡的數(shù),②無限不循環(huán)小數(shù),③含有π的數(shù),結(jié)合選項進(jìn)行判斷即可.【詳解】A、是無理數(shù),故本選項正確;

B、=2,是有理數(shù),故本選項錯誤;

C、0,是有理數(shù),故本選項錯誤;

D、1,是有理數(shù),故本選項錯誤;

故選:A.【點睛】本題考查了無理數(shù)的定義,屬于基礎(chǔ)題,掌握無理數(shù)的三種形式是解答本題的關(guān)鍵.3、A【分析】先利用正比例函數(shù)解析式確定A點坐標(biāo),然后觀察函數(shù)圖象得到,當(dāng)x>1時,直線y=1x都在直線y=kx+b的上方,當(dāng)x<1時,直線y=kx+b在x軸上方,于是可得到不等式0<kx+b<1x的解集.【詳解】設(shè)A點坐標(biāo)為(x,1),把A(x,1)代入y=1x,得1x=1,解得x=1,則A點坐標(biāo)為(1,1),所以當(dāng)x>1時,1x>kx+b,∵函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點B(1,0),∴x<1時,kx+b>0,∴不等式0<kx+b<1x的解集為1<x<1.故選A.【點睛】本題考查了一次函數(shù)與一元一次不等式的關(guān)系:從函數(shù)的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標(biāo)所構(gòu)成的集合.4、C【解析】A:完全平方公式:,據(jù)此判斷即可B:冪的乘方,底數(shù)不變,指數(shù)相乘,據(jù)此判斷即可C:冪的乘方,底數(shù)不變,指數(shù)相乘D:同底數(shù)冪相除,底數(shù)不變指數(shù)相減【詳解】選項A不正確;選項B不正確;選項C正確選項D不正確.故選:C【點睛】此題考查冪的乘方,完全平方公式,同底數(shù)冪的除法,掌握運算法則是解題關(guān)鍵5、A【分析】根據(jù)一元二次方程的根的判別式,建立關(guān)于m的不等式,求出m的取值范圍即可.【詳解】∵關(guān)于x的一元二次方程x2﹣3x+m=0有兩個不相等的實數(shù)根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<,故選A.【點睛】本題考查了根的判別式,解題的關(guān)鍵在于熟練掌握一元二次方程根的情況與判別式△的關(guān)系,即:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.6、C【解析】根據(jù)如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或,即可求出答案.【詳解】由位似變換中對應(yīng)點坐標(biāo)的變化規(guī)律得:點的對應(yīng)點的坐標(biāo)是或,即點的坐標(biāo)是或故選:C.【點睛】本題考查了位似變換中對應(yīng)點坐標(biāo)的變化規(guī)律,理解位似的概念,并熟記變化規(guī)律是解題關(guān)鍵.7、D【分析】根據(jù)拋物線的開口向下,可得a<0,求出對稱軸為:直線x=a,則可確定l4為y軸,再根據(jù)圖象與y軸交點,可得出l2為x軸,即可得出答案.【詳解】解:∵拋物線的開口向下,∴a<0,∵y=ax2﹣2a2x+1,∴對稱軸為:直線x=a<0,令x=0,則y=1,∴拋物線與y軸的正半軸相交,∴l(xiāng)2為x軸,l4為y軸.故選:D.【點睛】本題考查了二次函數(shù)的性質(zhì),開口方向由a確定,與y軸的交點由c確定,左同右異確定b的符號.8、C【分析】可利用正方形的邊把對應(yīng)的線段表示出來,利用一角相等且夾邊對應(yīng)成比例兩個三角形相似,根據(jù)各個選項條件篩選即可.【詳解】解:根據(jù)勾股定理,AC=,BC=,AB=所以,,,,則+=所以,利用勾股定理逆定理得△ABC是直角三角形

所以,=A.不存在直角,所以不與△ABC相似;B.兩直角邊比(較長的直角邊:較短的直角邊)=≠2,所以不與△ABC相似;C.選項中圖形是直角三角形,且兩直角邊比(較長的直角邊:較短的直角邊)=2,故C中圖形與所給圖形的三角形相似.D.不存在直角,所以不與△ABC相似.

故選:C.【點睛】此題考查了勾股定理在直角三角形中的運用,及判定三角形相似的方法,本題中根據(jù)勾股定理計算三角形的三邊長是解題的關(guān)鍵.9、A【解析】分析:根據(jù)關(guān)于x的一元二次方程x2-2x+m=0有兩個不相等的實數(shù)根可得△=(-2)2-4m>0,求出m的取值范圍即可.詳解:∵關(guān)于x的一元二次方程x2-2x+m=0有兩個不相等的實數(shù)根,∴△=(-2)2-4m>0,∴m<3,故選A.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當(dāng)△>0時,方程有兩個不相等的實數(shù)根;當(dāng)△=0時,方程有兩個相等的實數(shù)根;當(dāng)△<0時,方程沒有實數(shù)根.10、D【分析】先根據(jù)一次函數(shù)圖象經(jīng)過的象限得出a、b的正負(fù),由此即可得出反比例函數(shù)圖象經(jīng)過的象限,再與函數(shù)圖象進(jìn)行對比即可得出結(jié)論.【詳解】∵一次函數(shù)圖象應(yīng)該過第一、二、四象限,∴a<0,b>0,∴ab<0,∴反比例函數(shù)的圖象經(jīng)過二、四象限,故A選項錯誤,∵一次函數(shù)圖象應(yīng)該過第一、三、四象限,∴a>0,b<0,∴ab<0,∴反比例函數(shù)的圖象經(jīng)過二、四象限,故B選項錯誤;∵一次函數(shù)圖象應(yīng)該過第一、二、三象限,∴a>0,b>0,∴ab>0,∴反比例函數(shù)的圖象經(jīng)過一、三象限,故C選項錯誤;∵一次函數(shù)圖象經(jīng)過第二、三、四象限,∴a<0,b<0,∴ab>0,∴反比例函數(shù)的圖象經(jīng)經(jīng)過一、三象限,故D選項正確;故選:D.【點睛】本題主要考查了反比例函數(shù)的圖象性質(zhì)和一次函數(shù)的圖象性質(zhì),要掌握它們的性質(zhì)才能靈活解題.二、填空題(每小題3分,共24分)11、【解析】根據(jù)兩內(nèi)項之積等于兩外項之積列式整理即可得解.【詳解】∵,

∴4(a-b)=3b,

∴4a=7b,

∴,

故答案為:.【點睛】本題考查了比例的性質(zhì),熟記兩內(nèi)項之積等于兩外項之積是解題的關(guān)鍵.12、1【分析】根據(jù)旋轉(zhuǎn)性質(zhì)及直角三角形兩銳角互余,可得△E′CB是等邊三角形,從而得出∠ACE′的度數(shù),再根據(jù)∠ACE′+∠ACE′=90°得出△CDE旋轉(zhuǎn)的度數(shù).【詳解】解:根據(jù)題意和旋轉(zhuǎn)性質(zhì)可得:CE′=CE=BC,∵三角板是兩塊大小一樣且含有1°的角,∴∠B=60°∴△E′CB是等邊三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=1°,故答案為:1.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定和性質(zhì),本題關(guān)鍵是得到△ABC等邊三角形.13、1【解析】根據(jù)正方形的性質(zhì)及等邊三角形的性質(zhì)求出∠ADE=15°,∠DAC=45°,再求∠DFC,證△DCF?△BCF,可得∠BFC=∠DFC.【詳解】∵四邊形ABCD是正方形,

∴AB=AD=CD=BC,∠DCF=∠BCF=45°

又∵△ABE是等邊三角形,

∴AE=AB=BE,∠BAE=1°

∴AD=AE

∴∠ADE=∠AED,∠DAE=90°+1°=150°

∴∠ADE=(180°-150°)÷2=15°

又∵∠DAC=45°

∴∠DFC=45°+15°=1°在△DCF和△BCF中CD=BC∠DCF=∠BCF∴△DCF?△BCF∴∠BFC=∠DFC=1°

故答案為:1.【點睛】本題主要是考查了正方形的性質(zhì)和等邊三角形的性質(zhì),本題的關(guān)鍵是求出∠ADE=15°.14、4【分析】根據(jù)反比例函數(shù)的性質(zhì)得出,再結(jié)合圖象即可得出答案.【詳解】表示的是x與y的坐標(biāo)形成的矩形的面積反比例函數(shù)()的圖象在第一象限故答案為:4.【點睛】本題考查了反比例函數(shù)的性質(zhì),反比例函數(shù)中,的絕對值表示的是x與y的坐標(biāo)形成的矩形的面積.15、【分析】圓錐的側(cè)面積=×底面半徑×母線長,把相應(yīng)數(shù)值代入即可求解.【詳解】圓錐的側(cè)面積=×6×10=60cm1.故答案為.【點睛】本題考查圓錐側(cè)面積公式的運用,掌握公式是關(guān)鍵.16、【分析】過點A作AF⊥BC于點,過點D作DE⊥AC交AC的延長線于點E,目的得到直角三角形利用三角函數(shù)得△AFC三邊的關(guān)系,再證明△ACF∽△DCE,利用相似三角形性質(zhì)得出△DCE各邊比值,從而得解.【詳解】解:過點A作AF⊥BC于點,過點D作DE⊥AC交AC的延長線于點E,∵,∴∠B=∠ACF,sin∠ACF==,設(shè)AF=4k,則AC=5k,CD=,由勾股定理得:FC=3k,∵∠ACF=∠DCE,∠AFC=∠DEC=90°,∴△ACF∽△DCE,∴AC:CD=CF:CE=AF:DE,即5k:=3k:CE=4k:DE,解得:CE=,DE=2k,即AE=AC+CE=5k+=,∴在Rt△AED中,DE:AE=2k:=.故答案為:.【點睛】本題考查三角函數(shù)定義、相似三角形的判定與性質(zhì),解題關(guān)鍵是構(gòu)造直角三角形.17、x1=x2=2【分析】根據(jù)配方法即可解方程.【詳解】解:x2﹣4x+4=0(x-2)2=0∴x1=x2=2【點睛】本題考查了用配方法解一元二次方程,屬于簡單題,選擇配方法是解題關(guān)鍵.18、.【解析】試題分析:將△ABC繞點B旋轉(zhuǎn)60°,頂點C運動的路線長是就是以點B為圓心,BC為半徑所旋轉(zhuǎn)的弧,根據(jù)弧長公式即可求得.試題解析:∵AB=4,∴BC=2,所以弧長=.考點:1.弧長的計算;2.旋轉(zhuǎn)的性質(zhì).三、解答題(共66分)19、(1)證明見解析;(2).【分析】(1)根據(jù)題意先由BC=BA求出∠ACB=∠CAB,再根據(jù)三角形內(nèi)角和求出∠ABC=90°,即可得出結(jié)論;(2)根據(jù)題意先求出半徑OD,再根據(jù)勾股定理即可求出OC,進(jìn)而得出CD.【詳解】解:(1)證明:,,,,即,因此是的切線.(2)由(1)可知,,是的直徑,,,,.【點睛】本題考查圓的切線的判定和等腰三角形的性質(zhì)以及勾股定理,熟練掌握切線的判定方法,并據(jù)此進(jìn)行推理計算是解決問題的關(guān)鍵.20、(1)①證明見解析;②;(2)或.【分析】(1)通過正方形的性質(zhì)和等量代換可得到,從而可用SAS證明,利用全等的性質(zhì)即可得出;(2)先證明,則有,進(jìn)而可證明,得到,再利用得出,作交EH于點P,則,利用相似三角形的性質(zhì)得出,則問題可解;(3)設(shè),則,表示出EH,然后利用解出x的值,進(jìn)而可求EH的長度;當(dāng)E在BA的延長線上時,畫出圖形,用同樣的方法即可求EH的長度.【詳解】(1)①證明:∵四邊形ABCD,DEFG都是正方形∴∵在和中,②∵四邊形DEFG是正方形在和中,在和中,∵作交EH于點P,則(3)當(dāng)點E在AB邊上時,設(shè),則解得∴當(dāng)E在BA的延長線上時,如下圖∵四邊形ABCD,DEFG都是正方形∴∵在和中,∴點G在BC邊上∵四邊形DEFG是正方形在和中,設(shè),則解得∴綜上所述,EH的長度為或.【點睛】本題主要考查全等三角形的判定及性質(zhì),相似三角形的判定及性質(zhì),正方形的性質(zhì),掌握全等三角形和相似三角形的判定及性質(zhì)并分情況討論是解題的關(guān)鍵.21、(1)證明見解析;(2)1.【分析】(1)連接CP,根據(jù)等腰三角形的性質(zhì)得到∠PAC=∠PCA,由角平分線的定義得到∠PAC=∠EAC,等量代換得到∠PCA=∠EAC,推出PC∥AE,于是得到結(jié)論;(2)連接PC,根據(jù)角平分線的定義得到∠BAC=∠OAC,根據(jù)等腰三角形的性質(zhì)得到∠PCA=∠PAC,等量代換得到∠BAC=∠ACP,推出PC∥AB,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】(1)證明:連接,∵,∴,∵平分,∴,∴,∴,∵,∴,即是的切線.(2)連接,∵平分,∴,∵,∴,∴,∴,∴,∴,∵,,∴,,∴,∴,∴,∴的半徑為1【點睛】本題考查了角平分線的定義,平行線的判定和性質(zhì),切線的判定,相似三角形的判定和性質(zhì),正確的作出輔助線是解題的關(guān)鍵.22、(1)拋物線的對稱軸x=1,A(6,0);(1)△ACD的面積為11;(3)點P的坐標(biāo)為(1,1)或(1,6)或(1,3).【分析】(1)令y=0,求出x,即可求出點A、B的坐標(biāo),令x=0,求出y即可求出點C的坐標(biāo),再根據(jù)對稱軸公式即可求出拋物線的對稱軸;(1)先將二次函數(shù)的一般式化成頂點式,即可求出點D的坐標(biāo),利用待定系數(shù)法求出直線AC的解析式,從而求出點F的坐標(biāo),根據(jù)“鉛垂高,水平寬”求面積即可;(3)根據(jù)等腰三角形的底分類討論,①過點O作OM⊥AC交DE于點P,交AC于點M,根據(jù)等腰三角形的性質(zhì)和垂直平分線的性質(zhì)即可得出此時AC為等腰三角形ACP的底邊,且△OEP為等腰直角三角形,從而求出點P坐標(biāo);②過點C作CP⊥DE于點P,求出PD,可得此時△PCD是以CD為底邊的等腰直角三角形,從而求出點P坐標(biāo);③作AD的垂直平分線交DE于點P,根據(jù)垂直平分線的性質(zhì)可得PD=PA,設(shè)PD=x,根據(jù)勾股定理列出方程即可求出x,從而求出點P的坐標(biāo).【詳解】(1)對于拋物線y=﹣x1+1x+6令y=0,得到﹣x1+1x+6=0,解得x=﹣1或6,∴B(﹣1,0),A(6,0),令x=0,得到y(tǒng)=6,∴C(0,6),∴拋物線的對稱軸x=﹣=1,A(6,0).(1)∵y=﹣x1+1x+6=,∴拋物線的頂點坐標(biāo)D(1,8),設(shè)直線AC的解析式為y=kx+b,將A(6,0)和C(0,6)代入解析式,得解得:,∴直線AC的解析式為y=﹣x+6,將x=1代入y=﹣x+6中,解得y=4∴F(1,4),∴DF=4,∴==11;(3)①如圖1,過點O作OM⊥AC交DE于點P,交AC于點M,∵A(6,0),C(0,6),∴OA=OC=6,∴CM=AM,∠MOA=∠COA=45°∴CP=AP,△OEP為等腰直角三角形,∴此時AC為等腰三角形ACP的底邊,OE=PE=1.∴P(1,1),②如圖1,過點C作CP⊥DE于點P,∵OC=6,DE=8,∴PD=DE﹣PE=1,∴PD=PC,此時△PCD是以CD為底邊的等腰直角三角形,∴P(1,6),③如圖3,作AD的垂直平分線交DE于點P,則PD=PA,設(shè)PD=x,則PE=8﹣x,在Rt△PAE中,PE1+AE1=PA1,∴(8﹣x)1+41=x1,解得x=5,∴PE=8﹣5=3,∴P(1,3),綜上所述:點P的坐標(biāo)為(1,1)或(1,6)或(1,3).【點睛】此題考查的是二次函數(shù)與圖形的綜合大題,掌握將二次函數(shù)的一般式化為頂點式、二次函數(shù)圖象與坐標(biāo)軸的交點坐標(biāo)的求法、利用“鉛垂高,水平寬”求三角形的面積和分類討論的數(shù)學(xué)思想是解決此題的關(guān)鍵.23、(1)見解析;(2)BC=.【分析】(1)、是的高,可得,進(jìn)而可以證明;(2)在中,,,根據(jù)勾股定理可得,結(jié)合(1),對應(yīng)邊成比例,進(jìn)而證明,對應(yīng)邊成比例即可求出的長.【詳解】解:(1)證明:、是的高,,,;(2)在中,,,根據(jù)勾股定理,得,,,,,,,.【點睛】本題考查了相似三角形的判定與性質(zhì),解決本題的關(guān)鍵是掌握相似三角形的判定與性質(zhì).24、(1);(2);(3)或或.【分析】過點作于N,利用∠B的余弦值可求出BN的長,利用勾股定理即可求出AN的長,根據(jù)線段的和差關(guān)系可得CN的長,利用勾股定理可求出AC的長,根據(jù)AD//BC,AD=BC即可證明四邊形ABCD是平行四邊形,可得∠B=∠D,進(jìn)而可證明△ABC∽△ADF,根據(jù)相似三角形的性質(zhì)即可求出AF的長;(2)根據(jù)平行線的性質(zhì)可得,根據(jù)等量代換可得,進(jìn)而可證明△ABC∽△ABE,根據(jù)相似三角形的性質(zhì)可得,可用x表示出BE、CE的長,根據(jù)平行線分線段成比例定理可用x表示出的值,根據(jù)可得y與x的關(guān)系式,根據(jù)x>0,CE>0即可確定x的取值范圍;(3)分PA=PD、AP=AD和AD=PD三種情況,根據(jù)BE=及線段的和差關(guān)系,分別利用勾股定理列方程求出x的值即可得答案.【詳解】(1)如圖,過點作于N,∵AB=5,,∴在中,=5×=3,∴AN===4,∵BC=x=4,∴CN=BC-BN=4-3=1,在中,,∵AD=4,BC=x=4,∴AD=BC,∵,∴四邊形為平行四邊形,∴,又∵,∴△ABC∽△ADF,∴,∴解得:,(2)∵,∴,∵,∴,又∵∠B=∠B,∴△ABC∽△ABE,∴,∴,∵AD//BC,∴,∴,∵x>0,CE=>0,∴0<x<5,∴,(3)①如圖,當(dāng)PA=PD時,作AH⊥BM于H,PG⊥AD于G,延長GP交BM于N,∵PA=PD,AD=4,∴AG=DG=2,∠ADB=∠DAE,∵AD//BE,∴GN⊥BE,∠DAE=∠AEB,∠ADB=∠DBE,∴∠DBE=∠AEB,∴PB=PE,∴BN=EN=BE=,∵,AB=5,∴BH=AB·cos∠ABH=3,∵AH⊥BM,GN⊥MB,GN⊥AD,∴∠AHN=∠GNH=∠NGA=90°,∴四邊形AHNG是矩形,∴HN=AG=2,∴BN=BH+HN=3+2=5,∴=5,解得:x=.②如圖,當(dāng)AP=AD=4時,作AH⊥BM于H,∴∠ADB=∠APD,∵AD//BM,∴∠ADB=∠DBC,∵∠APD=∠BPE,∴∠DBC=∠BPE,∴BE=PE=,∵cos∠ABC=,AB=5,∴BH=3,AH=4,∴在Rt△AEH中,(4+)2=42+(3-)2,解得:x=,③如圖,當(dāng)AD=PD=4時,作AH⊥BM于H,DN⊥BM于N,∴∠DAP=∠DPA,∵AD//BM,∴∠DAP=∠AEB,∵∠APD=∠BPE,∴∠BPE=∠AEB,∴BP=BE=,∵cos∠ABC=,AB=5,∴BH=3,AH=4,∵AD//BM,AH⊥BM,DN⊥BM,∴四邊形AHND是矩形,∴DN=AH=4,HN=AD=4,中Rt△BND中,(4+)2=42+(4+3)2,解得:x=,綜上所述:x的值為或或.【點睛】本題考查相似三角形的綜合,熟練掌握銳

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論