版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.如圖,△ABC中,D是AB的中點,DE∥BC,連接BE.若AE=6,DE=5,∠BEC=90°,則△BCE的周長是()A.12 B.24 C.36 D.482.對于二次函數(shù)y=-(x+1)2+3,下列結(jié)論:①其圖象開口向下;②其圖象的對稱軸為直線x=1;③其圖象的頂點坐標為(-1,3);④當x>1時,y隨x的增大而減?。渲姓_結(jié)論的個數(shù)為()A.1 B.2 C.3 D.43.如圖,線段AB兩個端點的坐標分別為A(6,6),B(8,2).以原點O為位似中心,在第一象限內(nèi)將線段AB縮小后得到線段CD,且D(4,1),則端點C的坐標為()A.(3,1) B.(4,1) C.(3,3) D.(3,4)4.如圖所示,圖中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.5.如圖,在⊙O中,AB⊥OC,垂足為點D,AB=8,CD=2,若點P是優(yōu)弧上的任意一點,則sin∠APB=()A. B. C. D.6.若點在拋物線上,則的值()A.2021 B.2020 C.2019 D.20187.反比例函數(shù)的圖象如圖所示,以下結(jié)論:①常數(shù)m<-1;②在每個象限內(nèi),y隨x的增大而增大;③若A(-1,h),B(2,k)在圖象上,則h<k;④若P(x,y)在圖象上,則P′(-x,-y)也在圖象上.其中正確的是A.①② B.②③ C.③④ D.①④8.如圖1,在菱形ABCD中,∠A=120°,點E是BC邊的中點,點P是對角線BD上一動點,設(shè)PD的長度為x,PE與PC的長度和為y,圖2是y關(guān)于x的函數(shù)圖象,其中H是圖象上的最低點,則a+b的值為()A.7 B. C. D.9.下列條件中,一定能判斷兩個等腰三角形相似的是()A.都含有一個40°的內(nèi)角 B.都含有一個50°的內(nèi)角C.都含有一個60°的內(nèi)角 D.都含有一個70°的內(nèi)角10.一個半徑為2cm的圓的內(nèi)接正六邊形的面積是()A.24cm2 B.6cm2 C.12cm2 D.8cm211.已知點,,,在二次函數(shù)的圖象上,則,,的大小關(guān)系是()A. B. C. D.12.如圖,線段,點是線段的黃金分割點(),點是線段的黃金分割點(),點是線段的黃金分割點(),..,依此類推,則線段的長度是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,一塊飛鏢游戲板由大小相等的小正方形構(gòu)成,向游戲板隨機投擲一枚飛鏢(飛鏢每次都落在游戲板上),擊中黑色區(qū)域的概率是_____.14.方程x2+2x+m=0有兩個相等實數(shù)根,則m=___________.15.如圖,已知正方形ABCD的邊長是4,點E是AB邊上一動點,連接CE,過點B作BG⊥CE于點G,點P是AB邊上另一動點,則PD+PG的最小值為_____.16.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段的長為________.17.如圖,在矩形中對角線與相交于點,,垂足為點,且,則的長為___________.18.已知二次函數(shù),用配方法化為的形式為_________________,這個二次函數(shù)圖像的頂點坐標為____________.三、解答題(共78分)19.(8分)(1)如圖,已知AB、CD是大圓⊙O的弦,AB=CD,M是AB的中點.連接OM,以O(shè)為圓心,OM為半徑作小圓⊙O.判斷CD與小圓⊙O的位置關(guān)系,并說明理由;(2)已知⊙O,線段MN,P是⊙O外一點.求作射線PQ,使PQ被⊙O截得的弦長等于MN.(不寫作法,但保留作圖痕跡)20.(8分)如圖,已知二次函數(shù)的圖象與軸交于點、,與軸交于點,直線交二次函數(shù)圖象的對稱軸于點,若點C為的中點.(1)求的值;(2)若二次函數(shù)圖象上有一點,使得,求點的坐標;(3)對于(2)中的點,在二次函數(shù)圖象上是否存在點,使得∽?若存在,求出點的坐標;若不存在,請說明理由.21.(8分)定義:如果一個四邊形的一組對角互余,那么我們稱這個四邊形為“對角互余四邊形”.(1)如圖①,在對角互余四邊形ABCD中,∠B=60°,且AC⊥BC,AC⊥AD,若BC=1,則四邊形ABCD的面積為;(2)如圖②,在對角互余四邊形ABCD中,AB=BC,BD=13,∠ABC+∠ADC=90°,AD=8,CD=6,求四邊形ABCD的面積;(3)如圖③,在△ABC中,BC=2AB,∠ABC=60°,以AC為邊在△ABC異側(cè)作△ACD,且∠ADC=30°,若BD=10,CD=6,求△ACD的面積.22.(10分)有一張長,寬的長方形硬紙片(如圖1),截去四個全等的小正方形之后,折成無蓋的紙盒(如圖2).若紙盒的底面積為,求紙盒的高.23.(10分)已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).點B的坐標為(1,0),OC=3OB,(1)求拋物線的解析式;(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.24.(10分)在邊長為1個單位長度的正方形網(wǎng)格中建立如圖所示的平面直角坐標系。的頂點都在格點上,請解答下列問題:(1)作出關(guān)于原點對稱的;(2)寫出點、、的坐標。25.(12分)如圖,菱形EFGH的三個頂點E、G、H分別在正方形ABCD的邊AB、CD、DA上,連接CF.(1)求證:∠HEA=∠CGF;(2)當AH=DG時,求證:菱形EFGH為正方形.26.如圖,胡同左右兩側(cè)是豎直的墻,一架米長的梯子斜靠在右側(cè)墻壁上,測得梯子與地面的夾角為,此時梯子頂端恰巧與墻壁頂端重合.因梯子阻礙交通,故將梯子底端向右移動一段距離到達處,此時測得梯子與地面的夾角為,問:胡同左側(cè)的通道拓寬了多少米(保留根號)?
參考答案一、選擇題(每題4分,共48分)1、B【解析】試題解析:△ABC中,D是AB的中點,DE∥BC,是的中點,∠BEC=90°,△BCE的周長故選B.點睛:三角形的中位線平行于第三邊而且等于第三邊的一半.2、C【解析】由拋物線解析式可確定其開口方向、對稱軸、頂點坐標,可判斷①②③,再利用增減性可判斷④,可求得答案.【詳解】∵∴拋物線開口向上,對稱軸為直線x=?1,頂點坐標為(?1,3),故②不正確,①③正確,∵拋物線開口向上,且對稱軸為x=?1,∴當x>?1時,y隨x的增大而增大,∴當x>1時,y隨x的增大而增大,故④正確,∴正確的結(jié)論有3個,故選:C.【點睛】考查二次函數(shù)的圖象與性質(zhì),掌握二次函數(shù)的開口方向、對稱軸、頂點坐標的求解方法是解題的關(guān)鍵.3、C【分析】利用位似圖形的性質(zhì),結(jié)合兩圖形的位似比,即可得出C點坐標.【詳解】解:∵線段AB的兩個端點坐標分別為A(6,6),B(8,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小后得到線段CD,且D(4,1),∴在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,∴點C的橫坐標和縱坐標都變?yōu)锳點的一半,∴點C的坐標為:(3,3).故選:C.【點睛】此題主要考查了位似圖形的性質(zhì),利用兩圖形的位似比得出對應(yīng)點橫縱坐標關(guān)系是解題關(guān)鍵.在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標的比等于k或?k.4、C【解析】根據(jù)軸對稱圖形和中心對稱圖形的定義(軸對稱圖形是沿某條直線對折,對折的兩部分能夠完全重合的圖形,中心對稱圖形是繞著某一點旋轉(zhuǎn)后能與自身重合的圖形)判斷即可.【詳解】解:A選項是中心對稱圖形但不是軸對稱圖形,A不符合題意;B選項是軸對稱圖形但不是中心對稱圖形,B不符合題意;C選項既是軸對稱圖形又是中心對稱圖形,C符合題意;D選項既不是軸對稱圖形又不是中心對稱圖形.故選:C.【點睛】本題考查了軸對稱圖形與中心對稱圖形,熟練掌握軸對稱圖形與中心對稱圖形的判斷方法是解題的關(guān)鍵.5、B【分析】如圖,連接OA,OB.設(shè)OA=OB=x.利用勾股定理構(gòu)建方程求出x,再證明∠APB=∠AOD即可解決問題.【詳解】如圖,連接OA,OB.設(shè)OA=OB=x.∵OC⊥AB,∴AD=DB=4,在Rt△AOD中,則有x2=42+(x﹣2)2,∴x=5,∵OA=OB,OD⊥AB,∴∠AOD=∠BOD,∵∠APB=∠AOB=∠AOD,∴sin∠APB=sin∠AOD==,故選:B.【點睛】考查了圓周角定理和解直角三角形等知識,解題的關(guān)鍵是熟練靈活運用其相關(guān)知識.6、B【分析】將P點代入拋物線解析式得到等式,對等式進行適當變形即可.【詳解】解:將代入中得所以.故選:B.【點睛】本題考查二次函數(shù)上點的坐標特征,等式的性質(zhì).能根據(jù)等式的性質(zhì)進行適當變形是解決此題的關(guān)鍵.7、C【解析】分析:因為函數(shù)圖象在一、三象限,故有m>0,故①錯誤;在每個象限內(nèi),y隨x的增大而減小,故②錯;對于③,將A、B坐標代入,得:h=-m,,因為m>0,所以,h<k,故③正確;函數(shù)圖象關(guān)于原點對稱,故④正確.因此,正確的是③④.故選C.8、C【分析】由A、C關(guān)于BD對稱,推出PA=PC,推出PC+PE=PA+PE,推出當A、P、E共線時,PE+PC的值最小,觀察圖象可知,當點P與B重合時,PE+PC=6,推出BE=CE=2,AB=BC=4,分別求出PE+PC的最小值,PD的長即可解決問題.【詳解】解:∵在菱形ABCD中,∠A=120°,點E是BC邊的中點,∴易證AE⊥BC,∵A、C關(guān)于BD對稱,∴PA=PC,∴PC+PE=PA+PE,∴當A、P、E共線時,PE+PC的值最小,即AE的長.觀察圖象可知,當點P與B重合時,PE+PC=6,∴BE=CE=2,AB=BC=4,∴在Rt△AEB中,BE=,∴PC+PE的最小值為,∴點H的縱坐標a=,∵BC∥AD,∴=2,∵BD=,∴PD=,∴點H的橫坐標b=,∴a+b=;故選C.【點睛】本題考查動點問題的函數(shù)圖象,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.9、C【解析】試題解析:因為A,B,D給出的角可能是頂角也可能是底角,所以不對應(yīng),則不能判定兩個等腰三角形相似;故A,B,D錯誤;C.有一個的內(nèi)角的等腰三角形是等邊三角形,所有的等邊三角形相似,故C正確.故選C.10、B【解析】設(shè)O是正六邊形的中心,AB是正六邊形的一邊,OC是邊心距,則△OAB是正三角形,△OAB的面積的六倍就是正六邊形的面積解:如圖所示:設(shè)O是正六邊形的中心,AB是正六邊形的一邊,OC是邊心距,則∠AOB=60°,OA=OB=2cm,∴△OAB是正三角形,∴AB=OA=2cm,OC=OA?sin∠A=2×=(cm),∴S△OAB=AB?OC=×2×=(cm2),∴正六邊形的面積=6×=6(cm2).故選B.11、D【分析】由拋物線開口向上且對稱軸為直線x=3知離對稱軸水平距離越遠,函數(shù)值越大,據(jù)此求解可得.【詳解】∵二次函數(shù)中a=1>0,∴拋物線開口向上,有最小值.∵x=?=3,∴離對稱軸水平距離越遠,函數(shù)值越大,∵由二次函數(shù)圖象的對稱性可知4?3<3?<3?1,∴.故選:D.【點睛】本題主要考查二次函數(shù)圖象上點的坐標特征,解題的關(guān)鍵是掌握二次函數(shù)的圖象與性質(zhì).12、A【解析】根據(jù)黃金分割的定義得到,則,同理得到,,根據(jù)此規(guī)律得到.據(jù)此可得答案.【詳解】解:線段,點是線段的黃金分割點,,,點是線段的黃金分割點,,,.所以線段的長度是,故選:.【點睛】本題考查了黃金分割:把線段分成兩條線段和,且使是和的比例中項(即,叫做把線段黃金分割,點叫做線段的黃金分割點;其中,并且線段的黃金分割點有兩個.二、填空題(每題4分,共24分)13、【分析】根據(jù)幾何概率的求解公式即可求解.【詳解】解:∵總面積為9個小正方形的面積,其中陰影部分面積為3個小正方形的面積∴飛鏢落在陰影部分的概率是,故答案為.【點睛】此題主要考查概率的求解,解題的關(guān)鍵是熟知幾何概率的公式.14、1【分析】當△=0時,方程有兩個相等實數(shù)根.【詳解】由題意得:△=b2-4ac=22-4m=0,則m=1.故答案為1.【點睛】本題考察了根的判別式與方程根的關(guān)系.15、2-2【解析】作DC關(guān)于AB的對稱點D′C′,以BC中的O為圓心作半圓O,連D′O分別交AB及半圓O于P、G.將PD+PG轉(zhuǎn)化為D′G找到最小值.【詳解】如圖:取點D關(guān)于直線AB的對稱點D′,以BC中點O為圓心,OB為半徑畫半圓,連接OD′交AB于點P,交半圓O于點G,連BG,連CG并延長交AB于點E,由以上作圖可知,BG⊥EC于G,PD+PG=PD′+PG=D′G,由兩點之間線段最短可知,此時PD+PG最小,∵D′C’=4,OC′=6,∴D′O=,∴D′G=-2,∴PD+PG的最小值為-2,故答案為-2.【點睛】本題考查了軸對稱的性質(zhì)、直徑所對的圓周角是直角、線段和的最小值問題等,綜合性較強,能靈活利用相關(guān)知識正確添加輔助線是解題的關(guān)鍵.通常解此類問題都是將線段之和轉(zhuǎn)化為固定兩點之間的線段和最短.16、【解析】已知BC=8,AD是中線,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根據(jù)相似三角形的性質(zhì)可得,即可得AC2=CD?BC=4×8=32,解得AC=4.17、【分析】由矩形的性質(zhì)可得OC=OD,于是設(shè)DE=x,則OE=2x,OD=OC=3x,然后在Rt△OCE中,根據(jù)勾股定理即可得到關(guān)于x的方程,解方程即可求出x的值,進而可得CD的長,易證△ADC∽△CED,然后利用相似三角形的性質(zhì)即可求出結(jié)果.【詳解】解:∵四邊形ABCD是矩形,∴∠ADC=90°,BD=AC,OD=BD,OC=AC,∴OC=OD,∵EO=2DE,∴設(shè)DE=x,則OE=2x,∴OD=OC=3x,∵CE⊥BD,∴∠DEC=∠OEC=90°,在Rt△OCE中,∵OE2+CE2=OC2,∴(2x)2+52=(3x)2,解得:x=,即DE=,∴,∵∠ADE+∠CDE=90°,∠ECD+∠CDE=90°,∴∠ADE=∠ECD,又∵∠ADC=∠CED=90°,∴△ADC∽△CED,∴,即,解得:.故答案為:.【點睛】本題考查了矩形的性質(zhì)、勾股定理和相似三角形的判定與性質(zhì),屬于??碱}型,熟練掌握上述基本知識是解題的關(guān)鍵.18、【分析】先利用配方法提出二次項的系數(shù),再加上一次項系數(shù)的一半的平方來湊完全平方式,再根據(jù)頂點式即可得到頂點的坐標.【詳解】利用完全平方公式得:由此可得頂點坐標為.【點睛】本題考查了用配方法將二次函數(shù)的一般式轉(zhuǎn)化為頂點式、以及二次函數(shù)頂點坐標,熟練運用配方法是解題關(guān)鍵.三、解答題(共78分)19、(1)相切,證明見解析;(2)答案見解析【分析】(1)過點O作ON⊥CD,連接OA,OC,根據(jù)垂徑定理及其推論可得∠AMO=∠ONC=90°,AM=CN,從而求證△AOM≌△CON,從而判定CD與小圓O的位置關(guān)系;(2)在圓O上任取一點A,以A為圓心,MN為半徑畫弧,交圓O于點B,過點O做AB的垂線,交AB于點C,然后以點O為圓心,OC為半徑畫圓,連接PO,取PO的中點D,以點D為圓心,OD為半徑畫圓,交以O(shè)C為半徑的圓于點E,連接PE,交以O(shè)A為半徑的圓于F,H兩點,F(xiàn)H即為所求.【詳解】解:(1)過點O作ON⊥CD,連接OA,OC∵AB、CD是大圓⊙O的弦,AB=CD,M是AB的中點,ON⊥CD∴∠AMO=∠ONC=90°,AM=,CN,∴AM=CN又∵OA=OC∴△AOM≌△CON∴ON=OM∴CD與小圓O相切(2)如圖FH即為所求【點睛】本題考查垂徑定理及其推論,全等三角形的判定和性質(zhì),以及利用垂徑定理作圖,掌握相關(guān)知識靈活應(yīng)用是本題的解題關(guān)鍵.20、(1);(2)或;(3)不存在,理由見解析.【分析】(1)設(shè)對稱軸與軸交于點,如圖1,易求出拋物線的對稱軸,可得OE的長,然后根據(jù)平行線分線段成比例定理可得OA的長,進而可得點A的坐標,再把點A的坐標代入拋物線解析式即可求出m的值;(2)設(shè)點Q的橫坐標為n,當點在軸上方時,過點Q作QH⊥x軸于點H,利用可得關(guān)于n的方程,解方程即可求出n的值,進而可得點Q坐標;當點在軸下方時,注意到,所以點與點關(guān)于直線對稱,由此可得點Q坐標;(3)當點為x軸上方的點時,若存在點P,可先求出直線BQ的解析式,由BP⊥BQ可求得直線BP的解析式,然后聯(lián)立直線BP和拋物線的解析式即可求出點P的坐標,再計算此時兩個三角形的兩組對應(yīng)邊是否成比例即可判斷點P是否滿足條件;當點Q取另外一種情況的坐標時,再按照同樣的方法計算判斷即可.【詳解】解:(1)設(shè)拋物線的對稱軸與軸交于點,如圖1,∴軸,∴,∵拋物線的對稱軸是直線,∴OE=1,∴,∴∴將點代入函數(shù)表達式得:,∴;(2)設(shè),①點在軸上方時,,如圖2,過點Q作QH⊥x軸于點H,∵,∴,解得:或(舍),∴;②點在軸下方時,∵OA=1,OC=3,∴,∵,∴點與點關(guān)于直線對稱,∴;(3)①當點為時,若存在點P,使∽,則∠PBQ=∠COA=90°,由B(3,0)、Q可得,直線BQ的解析式為:,所以直線PB的解析式為:,聯(lián)立方程組:,解得:,,∴,∵,,∴,∴不存在;②當點為時,如圖4,由B(3,0)、Q可得,直線BQ的解析式為:,所以直線PB的解析式為:,聯(lián)立方程組:,解得:,,∴,∵,,∴,∴不存在.綜上所述,不存在滿足條件的點,使∽.【點睛】本題考查了平行線分線段成比例定理、二次函數(shù)圖象上點的坐標特征、一元二次方程的解法、相似三角形的判定和性質(zhì)、銳角三角函數(shù)和兩個函數(shù)的交點等知識,綜合性強、具有相當?shù)碾y度,熟練掌握上述知識、靈活應(yīng)用分類和數(shù)形結(jié)合的數(shù)學(xué)思想是解題的關(guān)鍵.21、(1)2;(2)36;(3).【分析】(1)由AC⊥BC,AC⊥AD,得出∠ACB=∠CAD=90°,利用含30°直角三角形三邊的特殊關(guān)系以及勾股定理,就可以解決問題;(2)將△BAD繞點B順時針旋轉(zhuǎn)到△BCE,則△BCE≌△BAD,連接DE,作BH⊥DE于H,作CG⊥DE于G,作CF⊥BH于F.這樣可以求∠DCE=90°,則可以得到DE的長,進而把四邊形ABCD的面積轉(zhuǎn)化為△BCD和△BCE的面積之和,△BDE和△CDE的面積容易算出來,則四邊形ABCD面積可求;(3)取BC的中點E,連接AE,作CF⊥AD于F,DG⊥BC于G,則BE=CE=BC,證出△ABE是等邊三角形,得出∠BAE=∠AEB=60°,AE=BE=CE,得出∠EAC=∠ECA==30°,證出∠BAC=∠BAE+∠EAC=90°,得出AC=AB,設(shè)AB=x,則AC=x,由直角三角形的性質(zhì)得出CF=3,從而DF=3,設(shè)CG=a,AF=y,證明△ACF∽△CDG,得出,求出y=,由勾股定理得出y2=(x)2-32=3x2-9,b2=62-a2=102-(2x+a)2,(2x+a)2+b2=132,整理得出a=,進而得y=,得出[]2=3x2-9,解得x2=34-6,得出y2=()2,解得y=-3,得出AD=AF+DF=,由三角形面積即可得出答案.【詳解】解:(1)∵AC⊥BC,AC⊥AD,∴∠ACB=∠CAD=90°,∵對角互余四邊形ABCD中,∠B=60°,∴∠D=30°,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,∴∠BAC=30°,∴AB=2BC=2,AC=BC=,在Rt△ACD中,∠CAD=90°,∠D=30°,∴AD=AC=3,CD=2AC=2,∵S△ABC=?AC?BC=××1=,S△ACD═?AC?AD=××3=,∴S四邊形ABCD=S△ABC+S△ACD=2,故答案為:2;(2)將△BAD繞點B順時針旋轉(zhuǎn)到△BCE,如圖②所示:則△BCE≌△BAD,連接DE,作BH⊥DE于H,作CG⊥DE于G,作CF⊥BH于F.∴∠CFH=∠FHG=∠HGC=90°,∴四邊形CFHG是矩形,∴FH=CG,CF=HG,∵△BCE≌△BAD,∴BE=BD=13,∠CBE=∠ABD,∠CEB=∠ADB,CE=AD=8,∵∠ABC+∠ADC=90°,∴∠DBC+∠CBE+∠BDC+∠CEB=90°,∴∠CDE+∠CED=90°,∴∠DCE=90°,在△BDE中,根據(jù)勾股定理可得:DE===10,∵BD=BE,BH⊥DE,∴EH=DH=5,∴BH===12,∴S△BED=?BH?DE=×12×10=60,S△CED=?CD?CE=×6×8=24,∵△BCE≌△BAD,∴S四邊形ABCD=S△BCD+S△BCE=S△BED﹣S△CED=60﹣24=36;(3)取BC的中點E,連接AE,作CF⊥AD于F,DG⊥BC于G,如圖③所示:則BE=CE=BC,∵BC=2AB,∴AB=BE,∵∠ABC=60°,∴△ABE是等邊三角形,∴∠BAE=∠AEB=60°,AE=BE=CE,∴∠EAC=∠ECA=∠AEB=30°,∴∠BAC=∠BAE+∠EAC=90°,∴AC=AB,設(shè)AB=x,則AC=x,∵∠ADC=30°,∴CF=CD=3,DF=CF=3,設(shè)CG=a,AF=y(tǒng),在四邊形ABCD中,∠ABC+∠BCD+∠ADC+∠BAC+∠DAC=360°,∴∠DAC+∠BCD=180°,∵∠BCD+∠DCG=180°,∴∠DAC=∠DCG,∵∠AFC=∠CGD=90°,∴△ACF∽△CDG,∴=,即=,∴y=,在Rt△ACF中,Rt△CDG和Rt△BDG中,由勾股定理得:y2=(x)2﹣32=3x2﹣9,b2=62﹣a2=102﹣(2x+a)2,(2x+a)2+b2=132,整理得:x2+ax﹣16=0,∴a=,∴y==×=,∴[]2=3x2﹣9,整理得:x4﹣68x2+364=0,解得:x2=34﹣6,或x2=34+6(不合題意舍去),∴x2=34﹣6,∴y2=3(34﹣6)﹣9=93﹣18=93﹣2=()2,∴y=﹣3,∴AF=﹣3,∴AD=AF+DF=,∴△ACD的面積=AD×CF=××3=.【點睛】此題是四邊形綜合題,主要考查了新定義的理解和應(yīng)用,相似三角形的判定和性質(zhì),勾股定理,等邊三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì),含30°角的直角三角形的性質(zhì)等知識;本題綜合性強,有一定難度.22、紙盒的高為.【分析】設(shè)紙盒的高是,根據(jù)題意,其底面的長寬分別為(40-2x)和(30-2x),根據(jù)長方形面積公式列方程求解即可.【詳解】解:設(shè)紙盒的高是.依題意,得.整理得.解得,(不合題意,舍去).答:紙盒的高為.【點睛】本題考查一元二次方程的應(yīng)用,根據(jù)題意用含x的式子表示底面的長和寬,正確列方程,解方程是本題的解題關(guān)鍵.23、(1);(2)四邊形ABCD面積有最大值.【分析】(1)已知B點坐標,易求得OB、OC的長,進而可將B、C的坐標代入拋物線中,求出待定系數(shù)的值,即可得出拋物線的解析式.
(2)根據(jù)A、C的坐標,易求得直線AC的解析式.由于AB、OC都是定值,則△ABC的面積不變,若四邊形ABCD面積最大,則△ADC的面積最大;可過D作x軸的垂線,交AC于M,x軸于N;易得△ADC的面積是DM與OA積的一半,可設(shè)出N點的坐標,分別代入直線AC和拋物線的解析式中,即可求出DM的長,進而可得出四邊形ABCD的面積與N點橫坐標間的函數(shù)關(guān)系式,根據(jù)所得函數(shù)的性質(zhì)即可求出四邊形ABCD的最大面積.【詳解】(1)∵B(1,0),∴OB=1;∵OC=3BO,∴C(0,﹣3);∵y=ax2+3ax+c過B(1,0)、C(0,﹣3),∴;解這個方程組,得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代農(nóng)業(yè)技術(shù)推廣與農(nóng)村辦公模式革新
- 小米公司的文化與創(chuàng)新驅(qū)動的商業(yè)模式
- 二零二五年度商業(yè)空間瓷磚裝飾工程合同8篇
- 2025年蘇人新版九年級歷史下冊階段測試試卷含答案
- 2025年魯科五四新版九年級歷史上冊月考試卷
- 2025年北師大新版選擇性必修3語文上冊月考試卷含答案
- 2025年外研銜接版八年級生物上冊月考試卷含答案
- 2025年滬教版第二冊生物上冊月考試卷
- 2025年人教A新版七年級生物下冊月考試卷
- 二零二五版木制托盤環(huán)保檢測采購合同4篇
- CJT 511-2017 鑄鐵檢查井蓋
- 配電工作組配電網(wǎng)集中型饋線自動化技術(shù)規(guī)范編制說明
- 職業(yè)分類表格
- 2024高考物理全國乙卷押題含解析
- 廣東省深圳高級中學(xué)2023-2024學(xué)年八年級下學(xué)期期中考試物理試卷
- 介入科圍手術(shù)期護理
- 青光眼術(shù)后護理課件
- 設(shè)立工程公司組建方案
- 設(shè)立項目管理公司組建方案
- 《物理因子治療技術(shù)》期末考試復(fù)習(xí)題庫(含答案)
- 退款協(xié)議書范本(通用版)docx
評論
0/150
提交評論