![無錫市重點中學2022年數(shù)學九年級第一學期期末經(jīng)典試題含解析_第1頁](http://file4.renrendoc.com/view3/M03/12/30/wKhkFmae-IKAKtoVAAGsIqmUE5s243.jpg)
![無錫市重點中學2022年數(shù)學九年級第一學期期末經(jīng)典試題含解析_第2頁](http://file4.renrendoc.com/view3/M03/12/30/wKhkFmae-IKAKtoVAAGsIqmUE5s2432.jpg)
![無錫市重點中學2022年數(shù)學九年級第一學期期末經(jīng)典試題含解析_第3頁](http://file4.renrendoc.com/view3/M03/12/30/wKhkFmae-IKAKtoVAAGsIqmUE5s2433.jpg)
![無錫市重點中學2022年數(shù)學九年級第一學期期末經(jīng)典試題含解析_第4頁](http://file4.renrendoc.com/view3/M03/12/30/wKhkFmae-IKAKtoVAAGsIqmUE5s2434.jpg)
![無錫市重點中學2022年數(shù)學九年級第一學期期末經(jīng)典試題含解析_第5頁](http://file4.renrendoc.com/view3/M03/12/30/wKhkFmae-IKAKtoVAAGsIqmUE5s2435.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.如圖,AB是⊙O的弦,AC是⊙O的切線,A為切點,BC經(jīng)過圓心,若∠B=25°,則∠C的大小等于()A.25° B.20° C.40° D.50°2.如圖,正方形AEFG的邊AE放置在正方形ABCD的對角線AC上,EF與CD交于點M,得四邊形AEMD,且兩正方形的邊長均為2,則兩正方形重合部分(陰影部分)的面積為()A.﹣4+4 B.4+4 C.8﹣4 D.+13.若點都是反比例函數(shù)的圖象上的點,并且,則下列各式中正確的是(()A. B. C. D.4.如圖,在平面直角坐標系中,直線l的表達式是,它與兩坐標軸分別交于C、D兩點,且∠OCD=60o,設(shè)點A的坐標為(m,0),若以A為圓心,2為半徑的⊙A與直線l相交于M、N兩點,當MN=時,m的值為()A. B. C.或 D.或5.如圖,⊙O是△ABC的外接圓,∠BAC=60°,若⊙O的半徑OC為2,則弦BC的長為()A.1 B. C.2 D.6.如圖,拋物線的對稱軸為直線,與軸的一個交點坐標為,其部分圖象如圖所示,下列結(jié)論:①;②;③方程的兩個根是,;④當時,的取值范圍是;⑤當時,隨增大而增大其中結(jié)論正確的個數(shù)是A.1個 B.2個 C.3個 D.4個7.如圖,點O為正五邊形ABCDE外接圓的圓心,五邊形ABCDE的對角線分別相交于點P,Q,R,M,N.若頂角等于36°的等腰三角形叫做黃金三角形,那么圖中共有()個黃金三角形.A.5 B.10 C.15 D.208.如圖,⊙O的直徑長10,弦AB=8,M是弦AB上的動點,則OM的長的取值范圍是()A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<59.如圖,在中,,已知,把沿軸負方向向左平移到的位置,此時在同一雙曲線上,則的值為()A. B. C. D.10.用配方法解方程,下列配方正確的是()A. B.C. D.11.拋物線y=x2+2x+3的對稱軸是()A.直線x=1 B.直線x=-1C.直線x=-2 D.直線x=212.方程的根為()A. B. C.或 D.或二、填空題(每題4分,共24分)13.若二次函數(shù)(為常數(shù))的最大值為3,則的值為________.14.如圖,在Rt△ABC中,∠ABC=90°,AB=1,BC=,將△ABC繞點頂C順時針旋轉(zhuǎn)60°,得到△MNC,連接BM,則BM的長是_____.15.已知點P是正方形ABCD內(nèi)部一點,且△PAB是正三角形,則∠CPD=_____度.16.在同一時刻,身高1.6米的小強在陽光下的影長為0.8米,一棵大樹的影長為4.8米,則樹的高度為.17.若一元二次方程的兩根為,,則__________.18.某數(shù)學興趣小組想測量一棵樹的高度,在陽光下,一名同學測得一根長為1m的竹竿的影長為0.5m,同時另一名同學測量一棵樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學樓的墻壁上,其中,落在墻壁上的影長為0.8m,落在地面上的影長為4.4m,則樹的高為_______m.三、解答題(共78分)19.(8分)如圖,中,,以為直徑作半圓交于點,點為的中點,連接.(1)求證:是半圓的切線;(2)若,,求的長.20.(8分)如圖,在Rt△ABC中,點O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結(jié)AD.已知∠CAD=∠B,(1)求證:AD是⊙O的切線.(2)若BC=8,tanB=,求⊙O的半徑.21.(8分)如圖,在邊長為1的正方形組成的網(wǎng)格中,的頂點均在格點上,點,的坐標分別是,,繞點逆時針旋轉(zhuǎn)后得到.(1)畫出,直接寫出點,的坐標;(2)求在旋轉(zhuǎn)過程中,點經(jīng)過的路徑的長;(3)求在旋轉(zhuǎn)過程中,線段所掃過的面積.22.(10分)如圖,AB是半圓O的直徑,AD為弦,∠DBC=∠A.(1)求證:BC是半圓O的切線;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的長.23.(10分)某商場將進貨價為30元的臺燈以40元的價格售出,平均每月能售出600個,經(jīng)調(diào)查表明,這種臺燈的售價每上漲1元,其銷量就減少10個,市場規(guī)定此臺燈售價不得超過60元.(1)為了實現(xiàn)銷售這種臺燈平均每月10000元的銷售利潤,售價應(yīng)定為多少元?(2)若商場要獲得最大利潤,則應(yīng)上漲多少元?24.(10分)如圖,四邊形ABCD中,AB=AD,∠BAD=60°,∠BCD=30°,將AC繞著點A順時針旋轉(zhuǎn)60°得AE,連接BE,CE.(1)求證:△ADC≌△ABE;(2)求證:(3)若AB=2,點Q在四邊形ABCD內(nèi)部運動,且滿足,直接寫出點Q運動路徑的長度.25.(12分)如圖,在四邊形中,將繞點順時針旋轉(zhuǎn)一定角度后,點的對應(yīng)點恰好與點重合,得到.(1)求證:;(2)若,試求四邊形的對角線的長.26.對于實數(shù)a,b,我們可以用min{a,b}表示a,b兩數(shù)中較小的數(shù),例如min{3,﹣1}=﹣1,min{1,1}=1.類似地,若函數(shù)y1、y1都是x的函數(shù),則y=min{y1,y1}表示函數(shù)y1和y1的“取小函數(shù)”.(1)設(shè)y1=x,y1=,則函數(shù)y=min{x,}的圖象應(yīng)該是中的實線部分.(1)請在圖1中用粗實線描出函數(shù)y=min{(x﹣1)1,(x+1)1}的圖象,并寫出該圖象的三條不同性質(zhì):①;②;③;(3)函數(shù)y=min{(x﹣4)1,(x+1)1}的圖象關(guān)于對稱.
參考答案一、選擇題(每題4分,共48分)1、C【解析】連接OA,根據(jù)切線的性質(zhì),即可求得∠C的度數(shù).【詳解】如圖,連接OA.∵AC是⊙O的切線,∴∠OAC=90°.∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故選C.【點睛】本題考查了圓的切線性質(zhì),以及等腰三角形的性質(zhì),已知切線時常用的輔助線是連接圓心與切點.2、A【解析】試題分析:∵四邊形ABCD是正方形,∴∠D=90°,∠ACD=15°,AD=CD=2,則S△ACD=AD?CD=×2×2=2;AC=AD=2,則EC=2﹣2,∵△MEC是等腰直角三角形,∴S△MEC=ME?EC=(2﹣2)2=6﹣1,∴陰影部分的面積=S△ACD﹣S△MEC=2﹣(6﹣1)=1﹣1.故選A.考點:正方形的性質(zhì).3、B【詳解】解:根據(jù)題意可得:∴反比例函數(shù)處于二、四象限,則在每個象限內(nèi)為增函數(shù),且當x<0時y>0,當x>0時,y<0,∴<<.4、C【分析】根據(jù)題意先求得、的長,分兩種情況討論:①當點在直線l的左側(cè)時,利用勾股定理求得,利用銳角三角函數(shù)求得,即可求得答案;②當點在直線l的右側(cè)時,同理可求得答案.【詳解】令,則,點D的坐標為,∵∠OCD=60o,∴,分兩種情況討論:①當點在直線l的左側(cè)時:如圖,過A作AG⊥CD于G,∵,MN=,∴,∴,在中,∠ACG=60o,∴,∴,∴,②當點在直線l的右側(cè)時:如圖,過A作AG⊥直線l于G,∵,MN=,∴,∴,在中,∠ACG=60o,∴,∴,∴,綜上:m的值為:或.故選:C.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征,勾股定理,銳角三角函數(shù),分類討論、構(gòu)建合適的輔助線是解題的關(guān)鍵.5、D【分析】先由圓周角定理求出∠BOC的度數(shù),再過點O作OD⊥BC于點D,由垂徑定理可知CD=BC,∠DOC=∠BOC=×120°=60°,再由銳角三角函數(shù)的定義即可求出CD的長,進而可得出BC的長.【詳解】解:∵∠BAC=60°,∴∠BOC=2∠BAC=2×60°=120°,過點O作OD⊥BC于點D,∵OD過圓心,∴CD=BC,∠DOC=∠BOC=×120°=60°,∴CD=OC×sin60°=2×=,∴BC=2CD=2.故選D.【點睛】本題考查的是圓周角定理、垂徑定理及銳角三角函數(shù)的定義,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.6、C【分析】利用拋物線與軸的交點個數(shù)可對①進行判斷;由對稱軸方程得到,然后根據(jù)時函數(shù)值為0可得到,則可對②進行判斷;利用拋物線的對稱性得到拋物線與軸的一個交點坐標為,則可對③進行判斷;根據(jù)拋物線在軸上方所對應(yīng)的自變量的范圍可對④進行判斷;根據(jù)二次函數(shù)的性質(zhì)對⑤進行判斷.【詳解】解:拋物線與軸有2個交點,,所以①正確;,即,而時,,即,,所以②錯誤;拋物線的對稱軸為直線,而點關(guān)于直線的對稱點的坐標為,方程的兩個根是,,所以③正確;根據(jù)對稱性,由圖象知,當時,,所以④錯誤;拋物線的對稱軸為直線,當時,隨增大而增大,所以⑤正確.故選:.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:對于二次函數(shù),二次項系數(shù)決定拋物線的開口方向和大?。寒敃r,拋物線向上開口;當時,拋物線向下開口;一次項系數(shù)和二次項系數(shù)共同決定對稱軸的位置:當與同號時(即,對稱軸在軸左;當與異號時(即,對稱軸在軸右;常數(shù)項決定拋物線與軸交點位置:拋物線與軸交于;拋物線與軸交點個數(shù)由△決定:△時,拋物線與軸有2個交點;△時,拋物線與軸有1個交點;△時,拋物線與軸沒有交點.7、D【分析】根據(jù)正五邊形的性質(zhì)和黃金三角形的定義進行分析.【詳解】根據(jù)題意,得圖中的黃金三角形有△EMR、△ARQ、△BQP、△CNP、△DMN、△DER、△EAQ、△ABP、△BCN、△CDM、△DAB、△EBC、△ECA、△ACD、△BDE,△ABR,△BQC,△CDP,△DEN,△EAQ,共20個.故選D.【點睛】此題考查了正五邊形的性質(zhì)和黃金三角形的定義.注意:此圖中所有頂角是銳角的等腰三角形都是黃金三角形.8、A【詳解】解:的直徑為10,半徑為5,當時,最小,根據(jù)勾股定理可得,與重合時,最大,此時,所以線段的的長的取值范圍為,故選A.【點睛】本題考查垂徑定理,掌握定理內(nèi)容正確計算是本題的解題關(guān)鍵.9、C【分析】作CN⊥x軸于點N,根據(jù)證明,求得點C的坐標;設(shè)△ABC沿x軸的負方向平移c個單位,用c表示出和,根據(jù)兩點都在反比例函數(shù)圖象上,求出k的值,即可求出反比例函數(shù)的解析式.【詳解】作CN⊥軸于點N,
∵A(2,0)、B(0,1).
∴AO=2,OB=1,∵,∴,
在和中,∴,∴,
又∵點C在第一象限,
∴C(3,2);設(shè)△ABC沿軸的負方向平移c個單位,
則,則,
又點和在該比例函數(shù)圖象上,
把點和的坐標分別代入,得,
解得:,∴,
故選:C.【點睛】本題是反比例函數(shù)與幾何的綜合題,涉及的知識有:全等三角形的判定與性質(zhì),勾股定理,坐標與圖形性質(zhì),利用待定系數(shù)法求函數(shù)解析式,平移的性質(zhì).10、C【分析】配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)的絕對值一半的平方.【詳解】解:等式兩邊同時加上一次項系數(shù)的絕對值一半的平方22,,∴;故選:C.【點睛】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準確應(yīng)用.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).11、B【分析】根據(jù)拋物線的對稱軸公式:計算即可.【詳解】解:拋物線y=x2+2x+3的對稱軸是直線故選B.【點睛】此題考查的是求拋物線的對稱軸,掌握拋物線的對稱軸公式是解決此題的關(guān)鍵.12、D【分析】用直接開平方法解方程即可.【詳解】x-1=±1x1=2,x2=0故選:D【點睛】本題考查的是用直接開平方法解一元二次方程,關(guān)鍵是要掌握開平方的方法,解題時要注意符號.二、填空題(每題4分,共24分)13、-1【分析】根據(jù)二次函數(shù)的最大值公式列出方程計算即可得解.【詳解】由題意得,,
整理得,,
解得:,
∵二次函數(shù)有最大值,
∴,
∴.
故答案為:.【點睛】本題考查了二次函數(shù)的最值,易錯點在于要考慮a的正負情況.14、【分析】由旋轉(zhuǎn)的性質(zhì)得:CA=CM,∠ACM=60°,由三角比可以求出∠ACB=30°,從而∠BCM=90°,然后根據(jù)勾股定理求解即可.【詳解】解:由旋轉(zhuǎn)的性質(zhì)得:CA=CM,∠ACM=60°,∵∠ABC=90°,AB=1,BC=,∴tan∠ACB=,CM=AC=,∴∠ACB=30°,∴∠BCM=90°,∴BM==.故答案為:.【點睛】本題考查了圖形的變換-旋轉(zhuǎn),銳角三角函數(shù),以及勾股定理等知識,準確把握旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.15、1【解析】如圖,先求出∠DAP=∠CBP=30°,由AP=AD=BP=BC,就可以求出∠PDC=∠PCD=15°,進而得出∠CPD的度數(shù).【詳解】解:如圖,∵四邊形ABCD是正方形,∴AD=AB=BC,∠DAB=∠ABC=90°,∵△ABP是等邊三角形,∴AP=BP=AB,∠PAB=∠PBA=60°,∴AP=AD=BP=BC,∠DAP=∠CBP=30°.∴∠BCP=∠BPC=∠APD=∠ADP=75°,∴∠PDC=∠PCD=15°,∴∠CPD=180°﹣∠PDC﹣∠PCD=180°﹣15°﹣15°=1°.故答案為1.【點睛】本題考查了正方形的性質(zhì)的運用,等邊三角形的性質(zhì)的運用,等腰三角形的性質(zhì)的運用,解答時運用三角形內(nèi)角和定理是關(guān)鍵.16、9.6【解析】試題分析:設(shè)樹的高度為x米,根據(jù)在同一時刻物高與影長成比例,即可列出比例式求解.設(shè)樹的高度為x米,由題意得解得則樹的高度為9.6米.考點:本題考查的是比例式的應(yīng)用點評:解答本題的關(guān)鍵是讀懂題意,準確理解在同一時刻物高與影長成比例,正確列出比例式.17、4【分析】利用韋達定理計算即可得出答案.【詳解】根據(jù)題意可得:故答案為4.【點睛】本題考查的是一元二次方程根與系數(shù)的關(guān)系,若和是方程的兩個解,則.18、9.2【分析】由題意可知在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經(jīng)過物體頂部的太陽光線三者構(gòu)成的兩個直角三角形相似.經(jīng)過樹在教學樓上的影子的頂端作樹的垂線和經(jīng)過樹頂?shù)奶柟饩€以及樹所成三角形,與竹竿,影子光線形成的三角形相似,這樣就可求出垂足到樹的頂端的高度,再加上墻上的影高就是樹高.【詳解】解:設(shè)從墻上的影子的頂端到樹的頂端的垂直高度是x米.則有,解得x=1.1.樹高是1.1+0.1=9.2(米).故答案為:9.2.【點睛】本題考查相似三角形的應(yīng)用,解題的關(guān)鍵是從復(fù)雜的數(shù)學問題中整理出三角形并利用相似三角形求解.三、解答題(共78分)19、(1)見解析;(2)【分析】(1)連接、,由AB是直徑可得,由點是的中點可得,,由OB與OD是半徑可得,進而得到,即可求證.(2)有(1)中結(jié)論及題意得,可得BC=4,由可得,,可得,AC=2BC=8,AD=AC-DC=6.【詳解】解:(1)證明:如圖,連接、,是半圓的直徑,點是的中點即是半圓的半徑是半圓的切線.(2)由(1)可知,,,∵可得∴,∵,∴,AC=2BC=8,∴AD=AC-DC=8-2=6【點睛】本題考查含30°角直角三角形的性質(zhì)和切線的判定.20、(1)證明見解析;(2).【分析】(1)連接OD,由OD=OB,利用等邊對等角得到一對角相等,再由已知角相等,等量代換得到∠1=∠3,求出∠4為90°,即可得證;
(2)設(shè)圓的半徑為r,利用銳角三角函數(shù)定義求出AB的長,再利用勾股定理列出關(guān)于r的方程,求出方程的解即可得到結(jié)果.【詳解】(1)證明:連接,,,,,在中,,,,則為圓的切線;(2)設(shè)圓的半徑為,在中,,根據(jù)勾股定理得:,,在中,,,根據(jù)勾股定理得:,在中,,即,解得:.【點睛】此題考查了切線的判定與性質(zhì),以及勾股定理,熟練掌握切線的判定與性質(zhì)是解本題的關(guān)鍵.21、(1)見解析,;(2);(3)【分析】(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B繞點O逆時針旋轉(zhuǎn)90°后的對應(yīng)點A1、B1的位置,然后順次連接即可,再根據(jù)平面直角坐標系寫出各點的坐標;
(2)利用勾股定理列式求出OB的長,再利用弧長公式列式計算即可得解;
(3)根據(jù)AB掃過的面積等于以O(shè)A、OB為半徑的兩個扇形的面積的差列式計算即可得解.【詳解】解:(1)△A1OB1如圖所示,
A1(-3,3),B1(-2,1);(2)由勾股定理得,∴弧BB1的長=(3)由勾股定理得,∴∴∴線段AB所掃過的面積為:【點睛】本題考查利用旋轉(zhuǎn)變換作圖,弧長計算,扇形的面積,熟練掌握網(wǎng)格結(jié)構(gòu),準確找出對應(yīng)點的位置是解題的關(guān)鍵,(3)判斷出AB掃過的面積等于兩個扇形的面積的差是解題的關(guān)鍵.22、(1)見解析;(2)AD=4.5.【分析】(1)若證明BC是半圓O的切線,利用切線的判定定理:即證明AB⊥BC即可;
(2)因為OC∥AD,可得∠BEC=∠D=90°,再有其他條件可判定△BCE∽△BAD,利用相似三角形的性質(zhì):對應(yīng)邊的比值相等即可求出AD的長.【詳解】(1)證明:∵AB是半圓O的直徑,
∴BD⊥AD,
∴∠DBA+∠A=90°,
∵∠DBC=∠A,
∴∠DBA+∠DBC=90°即AB⊥BC,
∴BC是半圓O的切線;(2)解:∵OC∥AD,
∴∠BEC=∠D=90°,
∵BD⊥AD,BD=6,
∴BE=DE=3,
∵∠DBC=∠A,
∴△BCE∽△BAD,,即;∴AD=4.5【點睛】本題考查了切線的判定.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.同時考查了相似三角形的判定和性質(zhì).23、(1)50元;(2)漲20元.【分析】(1)設(shè)這種臺燈上漲了x元,臺燈將少售出10x,那么利潤為(40+x-30)(600-10x)=10000,解方程即可;
(2)根據(jù)銷售利潤=每個臺燈的利潤×銷售量,每個臺燈的利潤=售價-進價,列出二次函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì)即可求最大利潤.【詳解】解:(1)設(shè)這種臺燈上漲了元,依題意得:,化簡得:,解得:(不合題意,舍去)或,售價:(元)答:這種臺燈的售價應(yīng)定為50元.(2)設(shè)臺燈上漲了元,利潤為元,依題意:∴對稱軸,在對稱軸的左側(cè)隨著的增大而增大,∵單價在60元以內(nèi),∴∴當時,元,答:商場要獲得最大利潤,則應(yīng)上漲20元.【點睛】此題考查一元二次方程和二次函數(shù)的實際運用---銷售利潤問題,能夠由實際問題轉(zhuǎn)化為一元二次方程或二次函數(shù)的問題是解題關(guān)鍵,要注意的是二次函數(shù)的最值要考慮自變量取值范圍,不一定在頂點處取得,這點很容易出錯.24、(1)證明見解析;(2)證明見解析;(3).【解析】(1)推出∠DAC=∠BAE,則可直接由SAS證明△ADC≌△ABE;(2)證明△BCE是直角三角形,再證DC=BE,AC=CE即可推出結(jié)論;(3)如圖2,設(shè)Q為滿足條件的點,將AQ繞著點A順時針旋轉(zhuǎn)60度得AF,連接QF,BF,QB,DQ,AF,證△ADQ≌△ABF,由勾股定理的逆定理證∠FBQ=90°,求出∠DQB=150°,確定點Q的路徑為過B,D,C三點的圓上,求出的長即可.【詳解】(1)證明:∵∠CAE=∠DAB=60°,∴∠CAE-∠CAB=∠DAB-∠CAB,∴∠DAC=∠BAE,又∵AD=AB,AC=AE,∴△ADC≌△ABE(SAS);(2)證明:在四邊形ABCD中,∠ADC+∠ABC=360°-∠DAB-∠DCB=270°,∵△ADC≌△ABE,∴∠ADC=∠ABE,CD=BE,∴∠ABC+ABE=∠ABC+∠ADC=270°,∴∠CBE=360°-(∠ABC+ABE)=90°,∴CE2=BE2+BC2,又∵AC=AE,∠CAE=60°,∴△ACE是等邊三角形,∴CE=AC=AE,∴AC2=DC2+BC2;(3)解:如圖2,設(shè)Q為滿足條件的點,將AQ繞著點A順時針旋轉(zhuǎn)60度得AF,連接QF,BF,QB,DQ,AF,則∠DAQ=∠BAF,AQ=QF,△AQF為等邊三角形,又∵AD=AB,∴△ADQ≌△ABF(SAS),∴AQ=FQ,BF=DQ,∵AQ2=BQ2+DQ2,∴FQ2=BQ2+BF2,∴∠FBQ=90°,∴∠AFB+∠AQB=360°-(∠QAF+∠FBQ)=210°,∴∠AQD+∠AQB=210°,∴∠DQB=360°-(∠AQD+∠AQB)=150°,∴點Q的路徑為過B,D,C三點的圓上,如圖2,設(shè)圓心為O,則∠BOD=2∠DCB=60°,連接DB,則△ODB與△ADB為等邊三角形,∴DO=DB=AB=2,∴點Q運動的路徑長為:.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),四邊形的內(nèi)角和,勾股定理的逆定理,圓的有關(guān)性質(zhì)及計算等,綜合性較強,解題關(guān)鍵是能夠熟練掌握并靈活運用圓的有關(guān)性質(zhì).25、(1)見解析;(2).【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)境科技進展下的新型辦公空間設(shè)計理念
- 2025年淮南c1貨運從業(yè)資格證模擬考試
- 校園內(nèi)科學教育的技術(shù)推廣與應(yīng)用
- 生態(tài)平衡視角下的城市化進程研究
- 生物傳感器在智能醫(yī)療設(shè)備中的應(yīng)用
- 用電設(shè)施的智能化管理與遠程監(jiān)控技術(shù)應(yīng)用
- 現(xiàn)代農(nóng)業(yè)技術(shù)與商業(yè)模式的創(chuàng)新實踐案例
- 生物質(zhì)能源商業(yè)模式的創(chuàng)新與實踐
- 電子商務(wù)物流產(chǎn)業(yè)園的智能化發(fā)展
- 電子商務(wù)用戶體驗優(yōu)化實踐案例分析
- QC成果地下室基礎(chǔ)抗浮錨桿節(jié)點處防水施工方法的創(chuàng)新
- 第一章:公共政策理論模型
- 中藥審核處方的內(nèi)容(二)
- (完整)金正昆商務(wù)禮儀答案
- RB/T 101-2013能源管理體系電子信息企業(yè)認證要求
- GB/T 10205-2009磷酸一銨、磷酸二銨
- 公司財務(wù)制度及流程
- 高支模專項施工方案(專家論證)
- 《物流與供應(yīng)鏈管理-新商業(yè)、新鏈接、新物流》配套教學課件
- 物聯(lián)網(wǎng)項目實施進度計劃表
- MDD指令附錄一 基本要求檢查表2013版
評論
0/150
提交評論