浙江省湖州市吳興區(qū)2024屆中考數(shù)學押題卷含解析_第1頁
浙江省湖州市吳興區(qū)2024屆中考數(shù)學押題卷含解析_第2頁
浙江省湖州市吳興區(qū)2024屆中考數(shù)學押題卷含解析_第3頁
浙江省湖州市吳興區(qū)2024屆中考數(shù)學押題卷含解析_第4頁
浙江省湖州市吳興區(qū)2024屆中考數(shù)學押題卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

浙江省湖州市吳興區(qū)2024屆中考數(shù)學押題卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.長春市奧林匹克公園即將于2018年年底建成,它的總投資額約為2500000000元,2500000000這個數(shù)用科學記數(shù)法表示為()A.0.25×1010B.2.5×1010C.2.5×109D.25×1082.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,則∠B′等于()A.30° B.50° C.40° D.70°3.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長也為2,且AC與DE在同一直線上,△ABC從C點與D點重合開始,沿直線DE向右平移,直到點A與點E重合為止,設CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關系的圖象大致是()A. B.C. D.4.某種微生物半徑約為0.00000637米,該數(shù)字用科學記數(shù)法可表示為()A.0.637×10﹣5B.6.37×10﹣6C.63.7×10﹣7D.6.37×10﹣75.如圖,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足為D、E,F(xiàn)分別是CD,AD上的點,且CE=AF.如果∠AED=62°,那么∠DBF的度數(shù)為()A.62° B.38° C.28° D.26°6.如圖,半徑為1的圓O1與半徑為3的圓O2相內(nèi)切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數(shù)是()A.1 B.2 C.3 D.47.如圖,BD是∠ABC的角平分線,DC∥AB,下列說法正確的是()A.BC=CD B.AD∥BCC.AD=BC D.點A與點C關于BD對稱8.下列運算結果是無理數(shù)的是()A.3× B. C. D.9.下列各式計算正確的是()A.a(chǎn)+3a=3a2 B.(–a2)3=–a6 C.a(chǎn)3·a4=a7 D.(a+b)2=a2–2ab+b210.如圖,平行四邊形ABCD中,E,F(xiàn)分別在CD、BC的延長線上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,則AB的長為()A. B. C.1 D.二、填空題(共7小題,每小題3分,滿分21分)11.若,,則的值為________.12.某班有54名學生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新學期準備調(diào)整座位,設某個學生原來的座位為(m,n),如果調(diào)整后的座位為(i,j),則稱該生作了平移[a,b]=[m-i,n-j],并稱a+b為該生的位置數(shù).若某生的位置數(shù)為10,則當m+n取最小值時,m?n的最大值為_____________.13.矩形紙片ABCD中,AB=3cm,BC=4cm,現(xiàn)將紙片折疊壓平,使A與C重合,設折痕為EF,則重疊部分△AEF的面積等于_____.14.如圖,AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于點C,若OC=6,則AB的長等于__.15.已知拋物線與直線在之間有且只有一個公共點,則的取值范圍是__.16.在數(shù)軸上與表示11的點距離最近的整數(shù)點所表示的數(shù)為_____.17.(題文)如圖1,點P從△ABC的頂點B出發(fā),沿B→C→A勻速運動到點A,圖2是點P運動時,線段BP的長度y隨時間x變化的關系圖象,其中M為曲線部分的最低點,則△ABC的面積是_____.三、解答題(共7小題,滿分69分)18.(10分)在矩形ABCD中,兩條對角線相交于O,∠AOB=60°,AB=2,求AD的長.19.(5分)對于某一函數(shù)給出如下定義:若存在實數(shù)p,當其自變量的值為p時,其函數(shù)值等于p,則稱p為這個函數(shù)的不變值.在函數(shù)存在不變值時,該函數(shù)的最大不變值與最小不變值之差q稱為這個函數(shù)的不變長度.特別地,當函數(shù)只有一個不變值時,其不變長度q為零.例如:下圖中的函數(shù)有0,1兩個不變值,其不變長度q等于1.(1)分別判斷函數(shù)y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長度;(2)函數(shù)y=2x2-bx.①若其不變長度為零,求b的值;②若1≤b≤3,求其不變長度q的取值范圍;(3)記函數(shù)y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G2,函數(shù)G的圖象由G1和G2兩部分組成,若其不變長度q滿足0≤q≤3,則m的取值范圍為.20.(8分)“綠水青山就是金山銀山”,北京市民積極參與義務植樹活動.小武同學為了了解自己小區(qū)300戶家庭在2018年4月份義務植樹的數(shù)量,進行了抽樣調(diào)查,隨即抽取了其中30戶家庭,收集的數(shù)據(jù)如下(單位:棵):112323233433433534344545343456(1)對以上數(shù)據(jù)進行整理、描述和分析:①繪制如下的統(tǒng)計圖,請補充完整;②這30戶家庭2018年4月份義務植樹數(shù)量的平均數(shù)是______,眾數(shù)是______;(2)“互聯(lián)網(wǎng)+全民義務植樹”是新時代首都全民義務植樹組織形式和盡責方式的一大創(chuàng)新,2018年首次推出義務植樹網(wǎng)上預約服務,小武同學所調(diào)查的這30戶家庭中有7戶家庭采用了網(wǎng)上預約義務植樹這種方式,由此可以估計該小區(qū)采用這種形式的家庭有______戶.21.(10分)先化簡,再求值:,其中m=2.22.(10分)老師布置了一個作業(yè),如下:已知:如圖1的對角線的垂直平分線交于點,交于點,交于點.求證:四邊形是菱形.某同學寫出了如圖2所示的證明過程,老師說該同學的作業(yè)是錯誤的.請你解答下列問題:能找出該同學錯誤的原因嗎?請你指出來;請你給出本題的正確證明過程.23.(12分)關于的一元二次方程.求證:方程總有兩個實數(shù)根;若方程有一根小于1,求的取值范圍.24.(14分)如圖1,在平行四邊形ABCD中,對角線AC與BD相交于點O,經(jīng)過點O的直線與邊AB相交于點E,與邊CD相交于點F.(1)求證:OE=OF;(2)如圖2,連接DE,BF,當DE⊥AB時,在不添加其他輔助線的情況下,直接寫出腰長等于BD的所有的等腰三角形.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值大于10時,n是正數(shù);當原數(shù)的絕對值小于1時,n是負數(shù).【詳解】2500000000的小數(shù)點向左移動9位得到2.5,所以2500000000用科學記數(shù)表示為:2.5×1.故選C.【點睛】本題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.2、A【解析】

利用三角形內(nèi)角和求∠B,然后根據(jù)相似三角形的性質(zhì)求解.【詳解】解:根據(jù)三角形內(nèi)角和定理可得:∠B=30°,根據(jù)相似三角形的性質(zhì)可得:∠B′=∠B=30°.故選:A.【點睛】本題考查相似三角形的性質(zhì),掌握相似三角形對應角相等是本題的解題關鍵.3、A【解析】

此題可分為兩段求解,即C從D點運動到E點和A從D點運動到E點,列出面積隨動點變化的函數(shù)關系式即可.【詳解】解:設CD的長為與正方形DEFG重合部分圖中陰影部分的面積為當C從D點運動到E點時,即時,.當A從D點運動到E點時,即時,,與x之間的函數(shù)關系由函數(shù)關系式可看出A中的函數(shù)圖象與所求的分段函數(shù)對應.故選A.【點睛】本題考查的動點變化過程中面積的變化關系,重點是列出函數(shù)關系式,但需注意自變量的取值范圍.4、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】0.00000637的小數(shù)點向右移動6位得到6.37所以0.00000637用科學記數(shù)法表示為6.37×10﹣6,故選B.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.5、C【解析】分析:主要考查:等腰三角形的三線合一,直角三角形的性質(zhì).注意:根據(jù)斜邊和直角邊對應相等可以證明△BDF≌△ADE.詳解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故選C.點睛:熟練運用等腰直角三角形三線合一性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半是解答本題的關鍵.6、C【解析】分析:過O1、O2作直線,以O1O2上一點為圓心作一半徑為2的圓,將這個圓從左側與圓O1、圓O2同時外切的位置(即圓O3)開始向右平移,觀察圖形,并結合三個圓的半徑進行分析即可得到符合要求的圓的個數(shù).詳解:如下圖,(1)當半徑為2的圓同時和圓O1、圓O2外切時,該圓在圓O3的位置;(2)當半徑為2的圓和圓O1、圓O2都內(nèi)切時,該圓在圓O4的位置;(3)當半徑為2的圓和圓O1外切,而和圓O2內(nèi)切時,該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個.故選C.點睛:保持圓O1、圓O2的位置不動,以直線O1O2上一個點為圓心作一個半徑為2的圓,觀察其從左至右平移過程中與圓O1、圓O2的位置關系,結合三個圓的半徑大小即可得到本題所求答案.7、A【解析】

由BD是∠ABC的角平分線,根據(jù)角平分線定義得到一對角∠ABD與∠CBD相等,然后由DC∥AB,根據(jù)兩直線平行,得到一對內(nèi)錯角∠ABD與∠CDB相等,利用等量代換得到∠DBC=∠CDB,再根據(jù)等角對等邊得到BC=CD,從而得到正確的選項.【詳解】∵BD是∠ABC的角平分線,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故選A.【點睛】此題考查了等腰三角形的判定,以及平行線的性質(zhì).學生在做題時,若遇到兩直線平行,往往要想到用兩直線平行得同位角或內(nèi)錯角相等,借助轉化的數(shù)學思想解決問題.這是一道較易的證明題,鍛煉了學生的邏輯思維能力.8、B【解析】

根據(jù)二次根式的運算法則即可求出答案.【詳解】A選項:原式=3×2=6,故A不是無理數(shù);B選項:原式=,故B是無理數(shù);C選項:原式==6,故C不是無理數(shù);D選項:原式==12,故D不是無理數(shù)故選B.【點睛】考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則,本題屬于基礎題型.9、C【解析】

根據(jù)合并同類項、冪的乘方、同底數(shù)冪的乘法、完全平方公式逐項計算即可.【詳解】A.a+3a=4a,故不正確;B.(–a2)3=(-a)6,故不正確;C.a3·a4=a7,故正確;D.(a+b)2=a2+2ab+b2,故不正確;故選C.【點睛】本題考查了合并同類項、冪的乘方、同底數(shù)冪的乘法、完全平方公式,熟練掌握各知識點是解答本題的關鍵.10、B【解析】

由平行四邊形性質(zhì)得出AB=CD,AB∥CD,證出四邊形ABDE是平行四邊形,得出DE=DC=AB,再由平行線得出∠ECF=∠ABC,由三角函數(shù)求出CF長,再用勾股定理CE,即可得出AB的長.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥DC,AB=CD,∵AE∥BD,∴四邊形ABDE是平行四邊形,∴AB=DE,∴AB=DE=CD,即D為CE中點,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠ECF=∠ABC,∴tan∠ECF=tan∠ABC=,在Rt△CFE中,EF=,tan∠ECF===,∴CF=,根據(jù)勾股定理得,CE==,∴AB=CE=,故選B.【點睛】本題考查了平行四邊形的性質(zhì)和判定、平行線的性質(zhì),三角函數(shù)的運用;熟練掌握平行四邊形的性質(zhì),勾股定理,判斷出AB=CE是解決問題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、-.【解析】分析:已知第一個等式左邊利用平方差公式化簡,將a﹣b的值代入即可求出a+b的值.詳解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案為.點睛:本題考查了平方差公式,熟練掌握平方差公式是解答本題的關鍵.12、36【解析】

10=a+b=(m-i)+(n-j)=(m+n)-(i+j)所以:m+n=10+i+j當(m+n)取最小值時,(i+j)也必須最小,所以i和j都是2,這樣才能(i+j)才能最小,因此:m+n=10+2=12也就是:當m+n=12時,m·n最大是多少?這就容易了:m·n<=36所以m·n的最大值就是3613、7516【解析】試題分析:要求重疊部分△AEF的面積,選擇AF作為底,高就等于AB的長;而由折疊可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代換后,可知AE=AF,問題轉化為在Rt△ABE中求AE.因此設AE=x,由折疊可知,EC=x,BE=4﹣x,在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣x)2=x2,解得:x=258,即AE=AF=25因此可求得S△AEF=12×AF×AB=12×考點:翻折變換(折疊問題)14、18【解析】連接OB,∵OA=OB,∴∠B=∠A=30°,∵∠COA=90°,∴AC=2OC=2×6=12,∠ACO=60°,∵∠ACO=∠B+∠BOC,∴∠BOC=∠ACO-∠B=30°,∴∠BOC=∠B,∴CB=OC=6,∴AB=AC+BC=18,故答案為18.15、或.【解析】

聯(lián)立方程可得,設,從而得出的圖象在上與x軸只有一個交點,當△時,求出此時m的值;當△時,要使在之間有且只有一個公共點,則當x=-2時和x=2時y的值異號,從而求出m的取值范圍;【詳解】聯(lián)立可得:,令,拋物線與直線在之間有且只有一個公共點,即的圖象在上與x軸只有一個交點,當△時,即△解得:,當時,當時,,滿足題意,當△時,令,,令,,,令代入解得:,此方程的另外一個根為:,故也滿足題意,故的取值范圍為:或故答案為:或.【點睛】此題考查的是根據(jù)二次函數(shù)與一次函數(shù)的交點問題,求函數(shù)中參數(shù)的取值范圍,掌握把函數(shù)的交點問題轉化為一元二次方程解的問題是解決此題的關鍵.16、3【解析】11≈3.317,且11在3和4之間,∵3.317-3=0.317,4-3.317=0.683,且0.683>0.317,∴11距離整數(shù)點3最近.17、12【解析】根據(jù)題意觀察圖象可得BC=5,點P在AC上運動時,BP⊥AC時,BP有最小值,觀察圖象可得,BP的最小值為4,即BP⊥AC時BP=4,又勾股定理求得CP=3,因點P從點C運動到點A,根據(jù)函數(shù)的對稱性可得CP=AP=3,所以ΔABC的面積是1三、解答題(共7小題,滿分69分)18、【解析】試題分析:由矩形的對角線相等且互相平分可得:OA=OB=OD,再由∠AOB=60°可得△AOB是等邊三角形,從而得到OB=OA=2,則BD=4,最后在Rt△ABD中,由勾股定理可解得AD的長.試題解析:∵四邊形ABCD是矩形,∴OA=OB=OD,∠BAD=90°,∵∠AOB=60°,∴△AOB是等邊三角形,∴OB=OA=2,∴BD=2OB=4,在Rt△ABD中∴AD===.19、詳見解析.【解析】試題分析:(1)根據(jù)定義分別求解即可求得答案;(1)①首先由函數(shù)y=1x1﹣bx=x,求得x(1x﹣b﹣1)=2,然后由其不變長度為零,求得答案;②由①,利用1≤b≤3,可求得其不變長度q的取值范圍;(3)由記函數(shù)y=x1﹣1x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G1,可得函數(shù)G的圖象關于x=m對稱,然后根據(jù)定義分別求得函數(shù)的不變值,再分類討論即可求得答案.試題解析:解:(1)∵函數(shù)y=x﹣1,令y=x,則x﹣1=x,無解;∴函數(shù)y=x﹣1沒有不變值;∵y=x-1=,令y=x,則,解得:x=±1,∴函數(shù)的不變值為±1,q=1﹣(﹣1)=1.∵函數(shù)y=x1,令y=x,則x=x1,解得:x1=2,x1=1,∴函數(shù)y=x1的不變值為:2或1,q=1﹣2=1;(1)①函數(shù)y=1x1﹣bx,令y=x,則x=1x1﹣bx,整理得:x(1x﹣b﹣1)=2.∵q=2,∴x=2且1x﹣b﹣1=2,解得:b=﹣1;②由①知:x(1x﹣b﹣1)=2,∴x=2或1x﹣b﹣1=2,解得:x1=2,x1=.∵1≤b≤3,∴1≤x1≤1,∴1﹣2≤q≤1﹣2,∴1≤q≤1;(3)∵記函數(shù)y=x1﹣1x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G1,∴函數(shù)G的圖象關于x=m對稱,∴G:y=.∵當x1﹣1x=x時,x3=2,x4=3;當(1m﹣x)1﹣1(1m﹣x)=x時,△=1+8m,當△<2,即m<﹣時,q=x4﹣x3=3;當△≥2,即m≥﹣時,x5=,x6=.①當﹣≤m≤2時,x3=2,x4=3,∴x6<2,∴x4﹣x6>3(不符合題意,舍去);②∵當x5=x4時,m=1,當x6=x3時,m=3;當2<m<1時,x3=2(舍去),x4=3,此時2<x5<x4,x6<2,q=x4﹣x6>3(舍去);當1≤m≤3時,x3=2(舍去),x4=3,此時2<x5<x4,x6>2,q=x4﹣x6<3;當m>3時,x3=2(舍去),x4=3(舍去),此時x5>3,x6<2,q=x5﹣x6>3(舍去);綜上所述:m的取值范圍為1≤m≤3或m<﹣.點睛:本題屬于二次函數(shù)的綜合題,考查了二次函數(shù)、反比例函數(shù)、一次函數(shù)的性質(zhì)以及函數(shù)的對稱性.注意掌握分類討論思想的應用是解答此題的關鍵.20、(1)3.4棵、3棵;(2)1.【解析】

(1)①由已知數(shù)據(jù)知3棵的有12人、4棵的有8人,據(jù)此補全圖形可得;②根據(jù)平均數(shù)和眾數(shù)的定義求解可得;(2)用總戶數(shù)乘以樣本中采用了網(wǎng)上預約義務植樹這種方式的戶數(shù)所占比例可得.【詳解】解:(1)①由已知數(shù)據(jù)知3棵的有12人、4棵的有8人,補全圖形如下:②這30戶家庭2018年4月份義務植樹數(shù)量的平均數(shù)是(棵),眾數(shù)為3棵,故答案為:3.4棵、3棵;(2)估計該小區(qū)采用這種形式的家庭有戶,故答案為:1.【點睛】此題考查條形統(tǒng)計圖,加權平均數(shù),眾數(shù),解題關鍵在于利用樣本估計總體.21、,原式.【解析】

原式括號中兩項通分并利用同分母分式的減法法則計算,約分得到最簡結果,把m的值代入計算即可求出值.【詳解】原式,當m=2時,原式.【點睛】此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關鍵.22、(1)能,見解析;(2)見解析.【解析】

(1)直接利用菱形的判定方法分析得出答案;

(2)直接利用全等三角形的判定與性質(zhì)得出EO=FO,進而得出答案.【詳解】解:(1)能;該同學錯在AC和EF并不是互相平分的,EF垂直平分AC,但未證明AC垂直平分EF,需要通過證明得出;(2)證明:∵四

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論