線性代數(shù)-英文講義_第1頁
線性代數(shù)-英文講義_第2頁
線性代數(shù)-英文講義_第3頁
線性代數(shù)-英文講義_第4頁
線性代數(shù)-英文講義_第5頁
已閱讀5頁,還剩44頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

Chapter1MatricesandSystemsofEquationsSystemsofLinearEquationsWheretheaij’s

andbi’sareallrealnumbers,xi’sarevariables.Wewillrefertosystemsoftheform(1)asm×nlinearsystems.DefinitionInconsistent:Alinearsystemhasnosolution.Consistent:Alinearsystemhasatleastonesolution.Example(ⅰ)x1+x2=2x1?x2=2(ⅱ)x1+x2=2x1

+x2=1

(ⅲ)x1+x2=2

?x1

?

x2=-2DefinitionTwosystemsofequationsinvolvingthesamevariablesaresaidtobeequivalentiftheyhavethesamesolutionset.ThreeOperationsthatcanbeusedonasystemtoobtainanequivalentsystem:Ⅰ.Theorderinwhichanytwoequationsarewrittenmaybeinterchanged.Ⅱ.Bothsidesofanequationmaybemultipliedbythesamenonzerorealnumber.Ⅲ.Amultipleofoneequationmaybeaddedto(orsubtractedfrom)another.

n×nSystemsDefinition

Asystemissaidtobeinstricttriangularformifinthekthequationthecoefficientsofthefirstk-1variablesareallzeroandthecoefficientofxkisnonzero(k=1,…,n).isinstricttriangularform.ExampleThesystem

ExampleSolvethesystem

ElementaryRowOperations:Ⅰ.Interchangetworows.Ⅱ.Multiplyarowbyanonzerorealnumber.Ⅲ.Replacearowbyitssumwithamultipleofanotherrow.

ExampleSolvethesystem

2RowEchelonFormpivotalrowpivotalrowDefinition

Amatrixissaidtobeinrowechelonformⅰ.Ifthefirstnonzeroentryineachnonzerorowis1.ⅱ.Ifrowkdoesnotconsistentirelyofzeros,thenumberofleadingzeroentriesinrowk+1isgreaterthanthenumberofleadingzeroentriesinrowk.ⅲ.Iftherearerowswhoseentriesareallzero,theyarebelowtherowshavingnonzeroentries.Example

Determinewhetherthefollowingmatricesareinrowechelonformornot.Definition

TheprocessofusingoperationsⅠ,Ⅱ,ⅢtotransformalinearsystemintoonewhoseaugmentedmatrixisinrowechelonformiscalledGaussianelimination.Definition

Alinearsystemissaidtobeoverdetermined

iftherearemoreequationsthanunknows.Asystemofmlinearequationsinn

unknowsissaidtobeunderdeterminediftherearefewerequationsthanunknows(m<n).ExampleDefinition

Amatrixissaidtobeinreducedrowechelonform

if:ⅰ.Thematrixisinrowechelonform.ⅱ.Thefirstnonzeroentryineachrowistheonlynonzeroentryinitscolumn.HomogeneousSystemsAsystemoflinearequationsissaidtobehomogeneousiftheconstantsontheright-handsideareallzero.Theorem1.2.1

Anm×nhomogeneoussystemoflinearequationshasanontrivialsolutionifn>m.

3MatrixAlgebraMatrixNotationVectorsrowvectorcolumnvector1×nmatrixn×1matrixDefinition

Twom×nmatricesAandBaresaidtobeequalifaij=bijforeachiandj.ScalarMultiplicationIfAisamatrixand

kisascalar,thenkAisthe

matrixformedbymultiplyingeachoftheentriesofAbyk.Definition

IfAisanm×nmatrixandkisascalar,thenkAisthem×n

matrixwhose(i,j)entryiskaij.MatrixAdditionTwomatriceswiththesamedimensionscanbeaddedbyaddingtheircorrespondingentries.

Definition

IfA=(aij)andB=(bij)arebothm×n

matrices,thenthesumA+Bisthem×n

matrixwhose(i,j)entryisaij+bijforeachorderedpair(i,j).ExampleLetThencalculate。MatrixMultiplicationDefinition

IfA=(aij)isanm×nmatrixandB=(bij)

isann×r

matrix,thentheproductAB=C=(cij)isthem×r

matrix

whoseentriesaredefinedby

cij=ai1b1j+ai2b2j+…+ainbnj=

aikbkj.k=1nExamplethencalculateAB.1.If2.IfthencalculateABandBA.MatrixMultiplicationandLinearSystemsCase1OneequationinSeveralUnknowsIfweletandthenwedefinetheproductAXby

Case2

MequationsinN

UnknowsIfweletandthenwedefinetheproductAXby

Definition

Ifa1,a2,…,anarevectorsin

Rmandc1,c2,…,cn

arescalars,thenasumoftheform

c1a1+c2a2+‥‥cnan

issaidtobealinearcombinationofthevectorsa1,a2,…,an

.Theorem1.3.1

(ConsistencyTheoremforLinearSystems)AlinearsystemAX=bisconsistentifandonlyifbcanbewrittenasalinearcombinationofthecolumnvectorsofA.

Theorem1.3.2

EachofthefollowingstatementsisvalidforanyscalarskandlandforanymatricesA,BandCforwhichtheindicatedoperationsaredefined.

A+B=B+A(A+B)+C=A+(B+C)(AB)C=A(BC)

A(B+C)=AB+AC

(A+B)+C=AC+BC(kl)A=k(lA)

k(AB)=(kA)B=A(kB)(k+l)A=kA+lA

k(A+B)=kA+kB

TheIdentityMatrixDefinition

Then×nidentityisthematrixwhereMatrixInversionDefinition

Ann×nmatrixAissaidtobenonsingularorinvertibleifthereexistsamatrixBsuchthatAB=BA=I.ThenmatrixBissaidtobeamultiplicativeinverseofA.Definition

Ann×nmatrixissaidtobesingularifitdoesnothaveamultiplicativeinverse.Theorem1.3.3

IfAandBarenonsingularn×nmatrices,thenABisalsononsingularand(AB)-1=B-1A-1

TheTransposeofaMatrixDefinition

Thetransposeofanm×nmatrixAisthen×mmatrixBdefinedby

bji=aij

forj=1,…,nandi=1,…,m.ThetransposeofAisdenotedbyAT.AlgebraRulesforTranspose:(AT)T=A(kA)T=kAT(A+B)T=AT+BT(AB)T=BTATDefinition

Ann×nmatrixAissaidtobesymmetricifAT=A.4.ElementaryMatricesIfwestartwiththeidentitymatrixIandthenperformexactlyoneelementaryrowoperation,theresultingmatrixiscalledanelementarymatrix.TypeI.AnelementarymatrixoftypeIisamatrixobtainedbyinterchangingtworowsof

I.Example

LetandletAbea3×3matrixthenTypeII.AnelementarymatrixoftypeIIisamatrixobtainedbymultiplyingarowofIbyanonzeroconstant.Example

LetandletAbea3×3matrixthenTypeIII.AnelementarymatrixoftypeIIIisamatrixobtainedfromIbyaddingamultipleofonerowtoanotherrow.Example

LetandletAbea3×3matrixIngeneral,supposethatEisann×nelementarymatrix.Eisobtainedbyeitherarowoperationoracolumnoperation.IfAisann×rmatrix,premultiplying

AbyEhastheeffectofperformingthatsamerowoperationonA.IfB

isanm×nmatrix,postmultiplying

BbyEisequivalenttoperformingthatsamecolumnoperationonB.Example

Let,

Findtheelementarymatrices

,,suchthat.Theorem1.4.1

IfEisanelementarymatrix,thenEisnonsingularandE-1isanelementarymatrixofthesametype.

Definition

AmatrixBisrowequivalenttoAifthereexistsafinitesequenceE1,E2,…,Ekofelementarymatricessuchthat

B=EkEk-1‥‥E1ATheorem1.4.2

(EquivalentConditionsforNonsingularity)LetAbean

n×nmatrix.Thefollowingareequivalent:

Aisnonsingular.

Ax=0hasonlythetrivialsolution0.

AisrowequivalenttoI.

Theorem1.4.3

ThesystemofnlinearequationsinnunknownsAx=bhasauniquesolutionifandonlyifAisnonsingular.

IfAisnonsingular,thenAisrowequivalenttoIandhencethereexistelementarymatricesE1,…,Eksuchthat

EkEk-1‥‥E1A=I

multiplyingbothsidesofthisequationontheright

byA-1EkEk-1‥‥E1I=A-1

Thus(AI)

(IA-1)rowoperationsAmethodforfindingtheinverseofamatrixExampleComputeA-1ifExampleSolvethesystemDiagonalandTriangularMatricesAnn×nmatrixAissaidtobeuppertriangularifaij=0fori>j

andlowertriangularifaij=0fori<j.Ann×nmatrixAissaidtobediagonalifaij=0wheneveri≠j.Aissaidtobetriangularifitiseitheruppertriangularorlowertriangular.5.PartitionedMatricesC=

-2413111132-1246224

C11

C12=

C21

C22

-121B=231141=(b1,b2,b3)AB=A(b1,b2,b3)=(Ab1,Ab2,Ab3)Ingeneral,ifAisanm×nmatrixandBisann×rthathasbeenpartitionedintocolumns(b1,…,br),thentheblockmultiplicationofAtimesBisgivenby

AB=(Ab1,Ab2,…,Abr)IfwepartitionAintorows,then

ThentheproductABcanbepartitionedintorowsasfollows:BlockMultiplicationLetAbeanm×nmatrixandBann×r

matrix.Case1B=(B1

B2),whereB1isann×tmatrixandB2isan

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論