版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
Chapter1MatricesandSystemsofEquationsSystemsofLinearEquationsWheretheaij’s
andbi’sareallrealnumbers,xi’sarevariables.Wewillrefertosystemsoftheform(1)asm×nlinearsystems.DefinitionInconsistent:Alinearsystemhasnosolution.Consistent:Alinearsystemhasatleastonesolution.Example(ⅰ)x1+x2=2x1?x2=2(ⅱ)x1+x2=2x1
+x2=1
(ⅲ)x1+x2=2
?x1
?
x2=-2DefinitionTwosystemsofequationsinvolvingthesamevariablesaresaidtobeequivalentiftheyhavethesamesolutionset.ThreeOperationsthatcanbeusedonasystemtoobtainanequivalentsystem:Ⅰ.Theorderinwhichanytwoequationsarewrittenmaybeinterchanged.Ⅱ.Bothsidesofanequationmaybemultipliedbythesamenonzerorealnumber.Ⅲ.Amultipleofoneequationmaybeaddedto(orsubtractedfrom)another.
n×nSystemsDefinition
Asystemissaidtobeinstricttriangularformifinthekthequationthecoefficientsofthefirstk-1variablesareallzeroandthecoefficientofxkisnonzero(k=1,…,n).isinstricttriangularform.ExampleThesystem
ExampleSolvethesystem
ElementaryRowOperations:Ⅰ.Interchangetworows.Ⅱ.Multiplyarowbyanonzerorealnumber.Ⅲ.Replacearowbyitssumwithamultipleofanotherrow.
ExampleSolvethesystem
2RowEchelonFormpivotalrowpivotalrowDefinition
Amatrixissaidtobeinrowechelonformⅰ.Ifthefirstnonzeroentryineachnonzerorowis1.ⅱ.Ifrowkdoesnotconsistentirelyofzeros,thenumberofleadingzeroentriesinrowk+1isgreaterthanthenumberofleadingzeroentriesinrowk.ⅲ.Iftherearerowswhoseentriesareallzero,theyarebelowtherowshavingnonzeroentries.Example
Determinewhetherthefollowingmatricesareinrowechelonformornot.Definition
TheprocessofusingoperationsⅠ,Ⅱ,ⅢtotransformalinearsystemintoonewhoseaugmentedmatrixisinrowechelonformiscalledGaussianelimination.Definition
Alinearsystemissaidtobeoverdetermined
iftherearemoreequationsthanunknows.Asystemofmlinearequationsinn
unknowsissaidtobeunderdeterminediftherearefewerequationsthanunknows(m<n).ExampleDefinition
Amatrixissaidtobeinreducedrowechelonform
if:ⅰ.Thematrixisinrowechelonform.ⅱ.Thefirstnonzeroentryineachrowistheonlynonzeroentryinitscolumn.HomogeneousSystemsAsystemoflinearequationsissaidtobehomogeneousiftheconstantsontheright-handsideareallzero.Theorem1.2.1
Anm×nhomogeneoussystemoflinearequationshasanontrivialsolutionifn>m.
3MatrixAlgebraMatrixNotationVectorsrowvectorcolumnvector1×nmatrixn×1matrixDefinition
Twom×nmatricesAandBaresaidtobeequalifaij=bijforeachiandj.ScalarMultiplicationIfAisamatrixand
kisascalar,thenkAisthe
matrixformedbymultiplyingeachoftheentriesofAbyk.Definition
IfAisanm×nmatrixandkisascalar,thenkAisthem×n
matrixwhose(i,j)entryiskaij.MatrixAdditionTwomatriceswiththesamedimensionscanbeaddedbyaddingtheircorrespondingentries.
Definition
IfA=(aij)andB=(bij)arebothm×n
matrices,thenthesumA+Bisthem×n
matrixwhose(i,j)entryisaij+bijforeachorderedpair(i,j).ExampleLetThencalculate。MatrixMultiplicationDefinition
IfA=(aij)isanm×nmatrixandB=(bij)
isann×r
matrix,thentheproductAB=C=(cij)isthem×r
matrix
whoseentriesaredefinedby
cij=ai1b1j+ai2b2j+…+ainbnj=
aikbkj.k=1nExamplethencalculateAB.1.If2.IfthencalculateABandBA.MatrixMultiplicationandLinearSystemsCase1OneequationinSeveralUnknowsIfweletandthenwedefinetheproductAXby
Case2
MequationsinN
UnknowsIfweletandthenwedefinetheproductAXby
Definition
Ifa1,a2,…,anarevectorsin
Rmandc1,c2,…,cn
arescalars,thenasumoftheform
c1a1+c2a2+‥‥cnan
issaidtobealinearcombinationofthevectorsa1,a2,…,an
.Theorem1.3.1
(ConsistencyTheoremforLinearSystems)AlinearsystemAX=bisconsistentifandonlyifbcanbewrittenasalinearcombinationofthecolumnvectorsofA.
Theorem1.3.2
EachofthefollowingstatementsisvalidforanyscalarskandlandforanymatricesA,BandCforwhichtheindicatedoperationsaredefined.
A+B=B+A(A+B)+C=A+(B+C)(AB)C=A(BC)
A(B+C)=AB+AC
(A+B)+C=AC+BC(kl)A=k(lA)
k(AB)=(kA)B=A(kB)(k+l)A=kA+lA
k(A+B)=kA+kB
TheIdentityMatrixDefinition
Then×nidentityisthematrixwhereMatrixInversionDefinition
Ann×nmatrixAissaidtobenonsingularorinvertibleifthereexistsamatrixBsuchthatAB=BA=I.ThenmatrixBissaidtobeamultiplicativeinverseofA.Definition
Ann×nmatrixissaidtobesingularifitdoesnothaveamultiplicativeinverse.Theorem1.3.3
IfAandBarenonsingularn×nmatrices,thenABisalsononsingularand(AB)-1=B-1A-1
TheTransposeofaMatrixDefinition
Thetransposeofanm×nmatrixAisthen×mmatrixBdefinedby
bji=aij
forj=1,…,nandi=1,…,m.ThetransposeofAisdenotedbyAT.AlgebraRulesforTranspose:(AT)T=A(kA)T=kAT(A+B)T=AT+BT(AB)T=BTATDefinition
Ann×nmatrixAissaidtobesymmetricifAT=A.4.ElementaryMatricesIfwestartwiththeidentitymatrixIandthenperformexactlyoneelementaryrowoperation,theresultingmatrixiscalledanelementarymatrix.TypeI.AnelementarymatrixoftypeIisamatrixobtainedbyinterchangingtworowsof
I.Example
LetandletAbea3×3matrixthenTypeII.AnelementarymatrixoftypeIIisamatrixobtainedbymultiplyingarowofIbyanonzeroconstant.Example
LetandletAbea3×3matrixthenTypeIII.AnelementarymatrixoftypeIIIisamatrixobtainedfromIbyaddingamultipleofonerowtoanotherrow.Example
LetandletAbea3×3matrixIngeneral,supposethatEisann×nelementarymatrix.Eisobtainedbyeitherarowoperationoracolumnoperation.IfAisann×rmatrix,premultiplying
AbyEhastheeffectofperformingthatsamerowoperationonA.IfB
isanm×nmatrix,postmultiplying
BbyEisequivalenttoperformingthatsamecolumnoperationonB.Example
Let,
Findtheelementarymatrices
,,suchthat.Theorem1.4.1
IfEisanelementarymatrix,thenEisnonsingularandE-1isanelementarymatrixofthesametype.
Definition
AmatrixBisrowequivalenttoAifthereexistsafinitesequenceE1,E2,…,Ekofelementarymatricessuchthat
B=EkEk-1‥‥E1ATheorem1.4.2
(EquivalentConditionsforNonsingularity)LetAbean
n×nmatrix.Thefollowingareequivalent:
Aisnonsingular.
Ax=0hasonlythetrivialsolution0.
AisrowequivalenttoI.
Theorem1.4.3
ThesystemofnlinearequationsinnunknownsAx=bhasauniquesolutionifandonlyifAisnonsingular.
IfAisnonsingular,thenAisrowequivalenttoIandhencethereexistelementarymatricesE1,…,Eksuchthat
EkEk-1‥‥E1A=I
multiplyingbothsidesofthisequationontheright
byA-1EkEk-1‥‥E1I=A-1
Thus(AI)
(IA-1)rowoperationsAmethodforfindingtheinverseofamatrixExampleComputeA-1ifExampleSolvethesystemDiagonalandTriangularMatricesAnn×nmatrixAissaidtobeuppertriangularifaij=0fori>j
andlowertriangularifaij=0fori<j.Ann×nmatrixAissaidtobediagonalifaij=0wheneveri≠j.Aissaidtobetriangularifitiseitheruppertriangularorlowertriangular.5.PartitionedMatricesC=
-2413111132-1246224
C11
C12=
C21
C22
-121B=231141=(b1,b2,b3)AB=A(b1,b2,b3)=(Ab1,Ab2,Ab3)Ingeneral,ifAisanm×nmatrixandBisann×rthathasbeenpartitionedintocolumns(b1,…,br),thentheblockmultiplicationofAtimesBisgivenby
AB=(Ab1,Ab2,…,Abr)IfwepartitionAintorows,then
ThentheproductABcanbepartitionedintorowsasfollows:BlockMultiplicationLetAbeanm×nmatrixandBann×r
matrix.Case1B=(B1
B2),whereB1isann×tmatrixandB2isan
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學(xué)年高三語文學(xué)業(yè)水平診斷(附答案)
- 增值稅政策解讀行業(yè)應(yīng)用與應(yīng)對
- 2024年國際空間站計劃任務(wù)
- 2024年巴西消費市場趨勢分析
- 2024年剪紙藝術(shù)課件:傳統(tǒng)手工與現(xiàn)代設(shè)計的對話
- 2024年敕勒歌教案:教學(xué)與研究
- 《接觸網(wǎng)施工》課件 4.1.2 滑輪補償裝置安裝與調(diào)整
- 2024年視角下的PFC課件創(chuàng)新趨勢
- 《安裝工程計量與計價(第2版)》課件 第3章 安裝工程清單計價
- 山東省濰坊市(2024年-2025年小學(xué)五年級語文)統(tǒng)編版小升初模擬(下學(xué)期)試卷及答案
- 肺脹病(中醫(yī)臨床路徑
- 鋼結(jié)構(gòu)防塵網(wǎng)施工方案
- “一戶一表”改造工程施工組織方案
- 大型及分布式光伏電站視頻監(jiān)控典型配置方案V1.0
- 《十字繡》教學(xué)設(shè)計及反思
- 橋梁形象進度圖
- C站使用說明JRC
- 習(xí)作:推薦一個好地方 推薦ppt課件
- 角的度量 華應(yīng)龍(課堂PPT)
- 公路銑刨機整機的設(shè)計含全套CAD圖紙
- 機器人學(xué)課程教學(xué)大綱
評論
0/150
提交評論