2023屆上海市交大嘉定高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第1頁
2023屆上海市交大嘉定高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第2頁
2023屆上海市交大嘉定高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第3頁
2023屆上海市交大嘉定高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第4頁
2023屆上海市交大嘉定高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),為的零點,為圖象的對稱軸,且在區(qū)間上單調(diào),則的最大值是()A. B. C. D.2.已知集合,將集合的所有元素從小到大一次排列構(gòu)成一個新數(shù)列,則()A.1194 B.1695 C.311 D.10953.如圖,正方體中,,,,分別為棱、、、的中點,則下列各直線中,不與平面平行的是()A.直線 B.直線 C.直線 D.直線4.對于函數(shù),定義滿足的實數(shù)為的不動點,設(shè),其中且,若有且僅有一個不動點,則的取值范圍是()A.或 B.C.或 D.5.已知函數(shù)滿足,且,則不等式的解集為()A. B. C. D.6.函數(shù)(其中,,)的圖象如圖,則此函數(shù)表達(dá)式為()A. B.C. D.7.已知集合,則()A. B. C. D.8.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.9.為了貫徹落實黨中央精準(zhǔn)扶貧決策,某市將其低收入家庭的基本情況經(jīng)過統(tǒng)計繪制如圖,其中各項統(tǒng)計不重復(fù).若該市老年低收入家庭共有900戶,則下列說法錯誤的是()A.該市總有15000戶低收入家庭B.在該市從業(yè)人員中,低收入家庭共有1800戶C.在該市無業(yè)人員中,低收入家庭有4350戶D.在該市大于18歲在讀學(xué)生中,低收入家庭有800戶10.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.11.“紋樣”是中國藝術(shù)寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機投擲200個點,己知恰有80個點落在陰影部分據(jù)此可估計陰影部分的面積是()A. B. C.10 D.12.在直角中,,,,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若向量與向量平行,則實數(shù)___________.14.在三棱錐中,已知,且平面平面,則三棱錐外接球的表面積為______.15.已知,,則與的夾角為.16.某地區(qū)連續(xù)5天的最低氣溫(單位:℃)依次為8,,,0,2,則該組數(shù)據(jù)的標(biāo)準(zhǔn)差為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左,右焦點分別為,,,M是橢圓E上的一個動點,且的面積的最大值為.(1)求橢圓E的標(biāo)準(zhǔn)方程,(2)若,,四邊形ABCD內(nèi)接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.18.(12分)中,內(nèi)角的對邊分別為,.(1)求的大小;(2)若,且為的重心,且,求的面積.19.(12分)若不等式在時恒成立,則的取值范圍是__________.20.(12分)已知函數(shù).(1)若,解關(guān)于的不等式;(2)若當(dāng)時,恒成立,求實數(shù)的取值范圍.21.(12分)已知頂點是坐標(biāo)原點的拋物線的焦點在軸正半軸上,圓心在直線上的圓與軸相切,且關(guān)于點對稱.(1)求和的標(biāo)準(zhǔn)方程;(2)過點的直線與交于,與交于,求證:.22.(10分)已知函數(shù).(1)若在處取得極值,求的值;(2)求在區(qū)間上的最小值;(3)在(1)的條件下,若,求證:當(dāng)時,恒有成立.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由題意可得,且,故有①,再根據(jù),求得②,由①②可得的最大值,檢驗的這個值滿足條件.【詳解】解:函數(shù),,為的零點,為圖象的對稱軸,,且,、,,即為奇數(shù)①.在,單調(diào),,②.由①②可得的最大值為1.當(dāng)時,由為圖象的對稱軸,可得,,故有,,滿足為的零點,同時也滿足滿足在上單調(diào),故為的最大值,故選:B.【點睛】本題主要考查正弦函數(shù)的圖象的特征,正弦函數(shù)的周期性以及它的圖象的對稱性,屬于中檔題.2、D【解析】

確定中前35項里兩個數(shù)列中的項數(shù),數(shù)列中第35項為70,這時可通過比較確定中有多少項可以插入這35項里面即可得,然后可求和.【詳解】時,,所以數(shù)列的前35項和中,有三項3,9,27,有32項,所以.故選:D.【點睛】本題考查數(shù)列分組求和,掌握等差數(shù)列和等比數(shù)列前項和公式是解題基礎(chǔ).解題關(guān)鍵是確定數(shù)列的前35項中有多少項是中的,又有多少項是中的.3、C【解析】

充分利用正方體的幾何特征,利用線面平行的判定定理,根據(jù)判斷A的正誤.根據(jù),判斷B的正誤.根據(jù)與相交,判斷C的正誤.根據(jù),判斷D的正誤.【詳解】在正方體中,因為,所以平面,故A正確.因為,所以,所以平面故B正確.因為,所以平面,故D正確.因為與相交,所以與平面相交,故C錯誤.故選:C【點睛】本題主要考查正方體的幾何特征,線面平行的判定定理,還考查了推理論證的能力,屬中檔題.4、C【解析】

根據(jù)不動點的定義,利用換底公式分離參數(shù)可得;構(gòu)造函數(shù),并討論的單調(diào)性與最值,畫出函數(shù)圖象,即可確定的取值范圍.【詳解】由得,.令,則,令,解得,所以當(dāng)時,,則在內(nèi)單調(diào)遞增;當(dāng)時,,則在內(nèi)單調(diào)遞減;所以在處取得極大值,即最大值為,則的圖象如下圖所示:由有且僅有一個不動點,可得得或,解得或.故選:C【點睛】本題考查了函數(shù)新定義的應(yīng)用,由導(dǎo)數(shù)確定函數(shù)的單調(diào)性與最值,分離參數(shù)法與構(gòu)造函數(shù)方法的應(yīng)用,屬于中檔題.5、B【解析】

構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,即可得到結(jié)論.【詳解】設(shè),則函數(shù)的導(dǎo)數(shù),,,即函數(shù)為減函數(shù),,,則不等式等價為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.【點睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,根據(jù)函數(shù)的單調(diào)性解不等式,考查學(xué)生分析問題解決問題的能力,是難題.6、B【解析】

由圖象的頂點坐標(biāo)求出,由周期求出,通過圖象經(jīng)過點,求出,從而得出函數(shù)解析式.【詳解】解:由圖象知,,則,圖中的點應(yīng)對應(yīng)正弦曲線中的點,所以,解得,故函數(shù)表達(dá)式為.故選:B.【點睛】本題主要考查三角函數(shù)圖象及性質(zhì),三角函數(shù)的解析式等基礎(chǔ)知識;考查考生的化歸與轉(zhuǎn)化思想,數(shù)形結(jié)合思想,屬于基礎(chǔ)題.7、C【解析】

解不等式得出集合A,根據(jù)交集的定義寫出A∩B.【詳解】集合A={x|x2﹣2x﹣30}={x|﹣1x3},,故選C.【點睛】本題考查了解不等式與交集的運算問題,是基礎(chǔ)題.8、C【解析】

由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【詳解】連接,,如圖:又,則為異面直線與所成的角.因為且三棱柱為直三棱柱,∴∴面,∴,又,,∴,∴,解得.故選C【點睛】考查直三棱柱的定義,線面垂直的性質(zhì),考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎(chǔ)題.9、D【解析】

根據(jù)給出的統(tǒng)計圖表,對選項進(jìn)行逐一判斷,即可得到正確答案.【詳解】解:由題意知,該市老年低收入家庭共有900戶,所占比例為6%,則該市總有低收入家庭900÷6%=15000(戶),A正確,該市從業(yè)人員中,低收入家庭共有15000×12%=1800(戶),B正確,該市無業(yè)人員中,低收入家庭有15000×29%%=4350(戶),C正確,該市大于18歲在讀學(xué)生中,低收入家庭有15000×4%=600(戶),D錯誤.故選:D.【點睛】本題主要考查對統(tǒng)計圖表的認(rèn)識和分析,這類題要認(rèn)真分析圖表的內(nèi)容,讀懂圖表反映出的信息是解題的關(guān)鍵,屬于基礎(chǔ)題.10、D【解析】

根據(jù)三視圖知,該幾何體是一條垂直于底面的側(cè)棱為2的四棱錐,畫出圖形,結(jié)合圖形求出底面積代入體積公式求它的體積.【詳解】根據(jù)三視圖知,該幾何體是側(cè)棱底面的四棱錐,如圖所示:結(jié)合圖中數(shù)據(jù)知,該四棱錐底面為對角線為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.【點睛】本題考查由三視圖求幾何體體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.屬于中等題.11、D【解析】

直接根據(jù)幾何概型公式計算得到答案.【詳解】根據(jù)幾何概型:,故.故選:.【點睛】本題考查了根據(jù)幾何概型求面積,意在考查學(xué)生的計算能力和應(yīng)用能力.12、C【解析】

在直角三角形ABC中,求得,再由向量的加減運算,運用平面向量基本定理,結(jié)合向量數(shù)量積的定義和性質(zhì):向量的平方即為模的平方,化簡計算即可得到所求值.【詳解】在直角中,,,,,

,

若,則故選C.【點睛】本題考查向量的加減運算和數(shù)量積的定義和性質(zhì),主要是向量的平方即為模的平方,考查運算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題可得,因為向量與向量平行,所以,解得.14、【解析】

取的中點,設(shè)等邊三角形的中心為,連接.根據(jù)等邊三角形的性質(zhì)可求得,,由等腰直角三角形的性質(zhì),得,根據(jù)面面垂直的性質(zhì)得平面,,由勾股定理求得,可得為三棱錐外接球的球心,根據(jù)球體的表面積公式可求得此外接球的表面積.【詳解】在等邊三角形中,取的中點,設(shè)等邊三角形的中心為,連接.由,得,,由已知可得是以為斜邊的等腰直角三角形,,又由已知可得平面平面,平面,,,所以,為三棱錐外接球的球心,外接球半徑,三棱錐外接球的表面積為.故答案為:【點睛】本題考查三棱錐的外接球的表面積,關(guān)鍵在于根據(jù)三棱錐的面的關(guān)系、棱的關(guān)系和長度求得外接球的球心的位置,球的半徑,屬于中檔題.15、【解析】

根據(jù)已知條件,去括號得:,16、【解析】

先求出這組數(shù)據(jù)的平均數(shù),再求出這組數(shù)據(jù)的方差,由此能求出該組數(shù)據(jù)的標(biāo)準(zhǔn)差.【詳解】解:某地區(qū)連續(xù)5天的最低氣溫(單位:依次為8,,,0,2,平均數(shù)為:,該組數(shù)據(jù)的方差為:,該組數(shù)據(jù)的標(biāo)準(zhǔn)差為1.故答案為:1.【點睛】本題考查一組數(shù)據(jù)據(jù)的標(biāo)準(zhǔn)差的求法,考查平均數(shù)、方差、標(biāo)準(zhǔn)差的定義等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】

(1)設(shè)橢圓E的半焦距為c,由題意可知,當(dāng)M為橢圓E的上頂點或下頂點時,的面積取得最大值,求出,即可得答案;(2)根據(jù)題意可知,,因為,所以可設(shè)直線CD的方程為,將直線代入曲線的方程,利用韋達(dá)定理得到的關(guān)系,再代入斜率公式可證得為定值.【詳解】(1)設(shè)橢圓E的半焦距為c,由題意可知,當(dāng)M為橢圓E的上頂點或下頂點時,的面積取得最大值.所以,所以,,故橢圓E的標(biāo)準(zhǔn)方程為.(2)根據(jù)題意可知,,因為,所以可設(shè)直線CD的方程為.由,消去y可得,所以,即.直線AD的斜率,直線BC的斜率,所以,故為定值.【點睛】本題考查橢圓標(biāo)準(zhǔn)方程的求解、橢圓中的定值問題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意坐標(biāo)法的運用.18、(1);(2)【解析】

(1)利用正弦定理,轉(zhuǎn)化為,分析運算即得解;(2)由為的重心,得到,平方可得解c,由面積公式即得解.【詳解】(1)由,由正弦定理得C,即∴∵∴,又∵∴(2)由于為的重心故,∴解得或舍∴的面積為.【點睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.19、【解析】

原不等式等價于在恒成立,令,,求出在上的最小值后可得的取值范圍.【詳解】因為在時恒成立,故在恒成立.令,由可得.令,,則為上的增函數(shù),故.故.故答案為:.【點睛】本題考查含參數(shù)的不等式的恒成立,對于此類問題,優(yōu)先考慮參變分離,把恒成立問題轉(zhuǎn)化為不含參數(shù)的新函數(shù)的最值問題,本題屬于基礎(chǔ)題.20、(1)(2)【解析】

(1)利用零點分段法將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)對分成三種情況,求得的最小值,由此求得的取值范圍.【詳解】(1)當(dāng)時,,由此可知,的解集為(2)當(dāng)時,的最小值為和中的最小值,其中,.所以恒成立.當(dāng)時,,且,不恒成立,不符合題意.當(dāng)時,,若,則,故不恒成立,不符合題意;若,則,故不恒成立,不符合題意.綜上,.【點睛】本小題主要考查絕對值不等式的解法,考查根據(jù)絕對值不等式恒成立求參數(shù)的取值范圍,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.21、(1),;(2)證明見解析.【解析】分析:(1)設(shè)的標(biāo)準(zhǔn)方程為,由題意可設(shè).結(jié)合中點坐標(biāo)公式計算可得的標(biāo)準(zhǔn)方程為.半徑,則的標(biāo)準(zhǔn)方程為.(2)設(shè)的斜率為,則其方程為,由弦長公式可得.聯(lián)立直線與拋物線的方程有.設(shè),利用韋達(dá)定理結(jié)合弦長公式可得.則.即.詳解:(1)設(shè)的標(biāo)準(zhǔn)方程為,則.已知在直線上,故可設(shè).因為關(guān)于對稱,所以解得所以的標(biāo)準(zhǔn)方程為.因為與軸相切,故半徑,所以的標(biāo)準(zhǔn)方程為.(2)設(shè)的斜率為,那么其方程為,則到的距離,所以.由消去并整理得:.設(shè),則,那么.所以.所以,即.點睛:(1)直線與拋物線的位置關(guān)系和直線與橢圓、雙曲線的位置關(guān)系類似,一般要用到根與系數(shù)的關(guān)系;(2)有關(guān)直線與拋物線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論