山東省煙臺龍口市市級名校2023-2024學年中考四模數學試題含解析_第1頁
山東省煙臺龍口市市級名校2023-2024學年中考四模數學試題含解析_第2頁
山東省煙臺龍口市市級名校2023-2024學年中考四模數學試題含解析_第3頁
山東省煙臺龍口市市級名校2023-2024學年中考四模數學試題含解析_第4頁
山東省煙臺龍口市市級名校2023-2024學年中考四模數學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省煙臺龍口市市級名校2023-2024學年中考四模數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,剪兩張對邊平行且寬度相同的紙條隨意交叉疊放在一起,轉動其中一張,重合部分構成一個四邊形,則下列結論中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°2.超市店慶促銷,某種書包原價每個x元,第一次降價打“八折”,第二次降價每個又減10元,經兩次降價后售價為90元,則得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=903.某車間需加工一批零件,車間20名工人每天加工零件數如表所示:每天加工零件數45678人數36542每天加工零件數的中位數和眾數為()A.6,5 B.6,6 C.5,5 D.5,64.如圖所示,在平面直角坐標系中,拋物線y=-x2+2x的頂點為A點,且與x軸的正半軸交于點B,P點為該拋物線對稱軸上一點,則OP+AP的最小值為().A.3 B. C. D.5.下列各式:①3+3=6;②=1;③+==2;④=2;其中錯誤的有().A.3個 B.2個 C.1個 D.0個6.把不等式組的解集表示在數軸上,正確的是()A. B.C. D.7.如圖,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠18.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數為()A.50° B.110° C.130° D.150°9.已知一組數據,,,,的平均數是2,方差是,那么另一組數據,,,,,的平均數和方差分別是.A. B. C. D.10.下列四個不等式組中,解集在數軸上表示如圖所示的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知等腰直角三角形ABC的直角邊長為1,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰直角三角形ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰直角三角形ADE……依此類推,直到第五個等腰直角三角形AFG,則由這五個等腰直角三角形所構成的圖形的面積為__________.12.已知梯形ABCD,AD∥BC,BC=2AD,如果AB=a,AC=b,那么DA=_____(用13.因式分解:.14.若點A(1,m)在反比例函數y=的圖象上,則m的值為________.15.如圖所示,輪船在處觀測燈塔位于北偏西方向上,輪船從處以每小時海里的速度沿南偏西方向勻速航行,小時后到達碼頭處,此時,觀測燈塔位于北偏西方向上,則燈塔與碼頭的距離是______海里(結果精確到個位,參考數據:,,)16.若關于的一元二次方程無實數根,則一次函數的圖象不經過第_________象限.17.某種商品每件進價為20元,調查表明:在某段時間內若以每件x元(20≤x≤30,且x為整數)出售,可賣出(30﹣x)件.若使利潤最大,每件的售價應為______元.三、解答題(共7小題,滿分69分)18.(10分)實踐:如圖△ABC是直角三角形,∠ACB=90°,利用直尺和圓規(guī)按下列要求作圖,并在圖中標明相應的字母.(保留作圖痕跡,不寫作法)作∠BAC的平分線,交BC于點O.以O為圓心,OC為半徑作圓.綜合運用:在你所作的圖中,AB與⊙O的位置關系是_____.(直接寫出答案)若AC=5,BC=12,求⊙O的半徑.19.(5分)小林在沒有量角器和圓規(guī)的情況下,利用刻度尺和一副三角板畫出了一個角的平分線,他的作法是這樣的:如圖:(1)利用刻度尺在∠AOB的兩邊OA,OB上分別取OM=ON;(2)利用兩個三角板,分別過點M,N畫OM,ON的垂線,交點為P;(3)畫射線OP.則射線OP為∠AOB的平分線.請寫出小林的畫法的依據______.20.(8分)先化簡代數式:,再代入一個你喜歡的數求值.21.(10分)某商店銷售兩種品牌的計算器,購買2個A品牌和3個B品牌的計算器共需280元;購買3個A品牌和1個B品牌的計算器共需210元.(Ⅰ)求這兩種品牌計算器的單價;(Ⅱ)開學前,該商店對這兩種計算器開展了促銷活動,具體辦法如下:A品牌計算器按原價的九折銷售,B品牌計算器10個以上超出部分按原價的七折銷售.設購買x個A品牌的計算器需要y1元,購買x個B品牌的計算器需要y2元,分別求出y1,y2關于x的函數關系式.(Ⅲ)某校準備集體購買同一品牌的計算器,若購買計算器的數量超過15個,購買哪種品牌的計算器更合算?請說明理由.22.(10分)一輛慢車從甲地勻速行駛至乙地,一輛快車同時從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時間x(小時)的對應關系如圖所示:(1)甲乙兩地相距千米,慢車速度為千米/小時.(2)求快車速度是多少?(3)求從兩車相遇到快車到達甲地時y與x之間的函數關系式.(4)直接寫出兩車相距300千米時的x值.23.(12分)如圖,已知A(﹣4,n),B(2,﹣4)是一次函數y=kx+b的圖象和反比例函數y=的圖象的兩個交點.求反比例函數和一次函數的解析式;求直線AB與x軸的交點C的坐標及△AOB的面積;直接寫出一次函數的值小于反比例函數值的x的取值范圍.24.(14分)某省為解決農村飲用水問題,省財政部門共投資20億元對各市的農村飲用水的“改水工程”予以一定比例的補助.2008年,A市在省財政補助的基礎上投入600萬元用于“改水工程”,計劃以后每年以相同的增長率投資,2010年該市計劃投資“改水工程”1176萬元.求A市投資“改水工程”的年平均增長率;從2008年到2010年,A市三年共投資“改水工程”多少萬元?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

首先可判斷重疊部分為平行四邊形,且兩條紙條寬度相同;再由平行四邊形的等積轉換可得鄰邊相等,則四邊形為菱形.所以根據菱形的性質進行判斷.【詳解】解:四邊形是用兩張等寬的紙條交叉重疊地放在一起而組成的圖形,,,四邊形是平行四邊形(對邊相互平行的四邊形是平行四邊形);過點分別作,邊上的高為,.則(兩紙條相同,紙條寬度相同);平行四邊形中,,即,,即.故正確;平行四邊形為菱形(鄰邊相等的平行四邊形是菱形).,(菱形的對角相等),故正確;,(平行四邊形的對邊相等),故正確;如果四邊形是矩形時,該等式成立.故不一定正確.故選:.【點睛】本題考查了菱形的判定與性質.注意:“鄰邊相等的平行四邊形是菱形”,而非“鄰邊相等的四邊形是菱形”.2、A【解析】試題分析:設某種書包原價每個x元,根據題意列出方程解答即可.設某種書包原價每個x元,可得:0.8x﹣10=90考點:由實際問題抽象出一元一次方程.3、A【解析】

根據眾數、中位數的定義分別進行解答即可.【詳解】由表知數據5出現(xiàn)了6次,次數最多,所以眾數為5;因為共有20個數據,所以中位數為第10、11個數據的平均數,即中位數為=6,故選A.【點睛】本題考查了眾數和中位數的定義.用到的知識點:一組數據中出現(xiàn)次數最多的數據叫做這組數據的眾數.將一組數據按照從小到大(或從大到?。┑捻樞蚺帕?,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.4、A【解析】

連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到點B,再利用配方法得到點A,得到OA的長度,判斷△AOB為等邊三角形,然后利用∠OAP=30°得到PH=AP,利用拋物線的性質得到PO=PB,再根據兩點之間線段最短求解.【詳解】連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如圖當y=0時-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB為等邊三角形,∠OAP=30°得到PH=AP,因為AP垂直平分OB,所以PO=PB,所以OP+AP=PB+PH,所以當H,P,B共線時,PB+PH最短,而BC=AB=3,所以最小值為3.故選A.【點睛】本題考查的是二次函數的綜合運用,熟練掌握二次函數的性質和最短途徑的解決方法是解題的關鍵.5、A【解析】3+3=6,錯誤,無法計算;②=1,錯誤;③+==2不能計算;④=2,正確.故選A.6、A【解析】

分別求出各個不等式的解集,再求出這些解集的公共部分并在數軸上表示出來即可.【詳解】由①,得x≥2,

由②,得x<1,

所以不等式組的解集是:2≤x<1.

不等式組的解集在數軸上表示為:

故選A.【點睛】本題考查的是解一元一次不等式組.熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.7、D【解析】

先根據AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把兩式相加即可得出結論.【詳解】解:∵AB∥CD,∴∠BCD=∠1,∵CD∥EF,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故選:D.【點睛】本題考查的是平行線的判定,用到的知識點為:兩直線平行,內錯角相等,同旁內角互補.8、C【解析】

如圖,根據長方形的性質得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【點睛】本題考查了平行線的性質,三角形外角的性質等,準確識圖是解題的關鍵.9、D【解析】

根據數據的變化和其平均數及方差的變化規(guī)律求得新數據的平均數及方差即可.【詳解】解:∵數據x1,x2,x3,x4,x5的平均數是2,∴數據3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均數是3×2-2=4;∵數據x1,x2,x3,x4,x5的方差為,∴數據3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴數據3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故選D.【點睛】本題考查了方差的知識,說明了當數據都加上一個數(或減去一個數)時,平均數也加或減這個數,方差不變,即數據的波動情況不變;當數據都乘以一個數(或除以一個數)時,平均數也乘以或除以這個數,方差變?yōu)檫@個數的平方倍.10、D【解析】

此題涉及的知識點是不等式組的表示方法,根據規(guī)律可得答案.【詳解】由解集在數軸上的表示可知,該不等式組為,故選D.【點睛】本題重點考查學生對于在數軸上表示不等式的解集的掌握程度,不等式組的解集的表示方法:大小小大取中間是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、12.2【解析】

∵△ABC是邊長為1的等腰直角三角形,∴S△ABC=×1×1==11-1;AC==,AD==1,∴S△ACD==1=11-1∴第n個等腰直角三角形的面積是1n-1.∴S△AEF=14-1=4,S△AFG=12-1=8,由這五個等腰直角三角形所構成的圖形的面積為+1+1+4+8=12.2.故答案為12.2.12、1【解析】

根據向量的三角形法則表示出CB,再根據BC、AD的關系解答.【詳解】如圖,∵AB=a,∴CB=AB-AC=a-b,∵AD∥BC,BC=2AD,∴DA=12CB=12(a-b)=1故答案為12a-【點睛】本題考查了平面向量,梯形,向量的問題,熟練掌握三角形法則和平行四邊形法則是解題的關鍵.13、;【解析】

根據所給多項式的系數特點,可以用十字相乘法進行因式分解.【詳解】x2﹣x﹣12=(x﹣4)(x+3).故答案為(x﹣4)(x+3).14、3【解析】試題解析:把A(1,m)代入y=得:m=3.所以m的值為3.15、1【解析】

作BD⊥AC于點D,在直角△ABD中,利用三角函數求得BD的長,然后在直角△BCD中,利用三角函數即可求得BC的長.【詳解】∠CBA=25°+50°=75°,作BD⊥AC于點D,則∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∠ABD=30°,∴∠CBD=75°﹣30°=45°,在直角△ABD中,BD=AB?sin∠CAB=20×sin60°=20×=10,在直角△BCD中,∠CBD=45°,則BC=BD=10×=10≈10×2.4=1(海里),故答案是:1.【點睛】本題考查了解直角三角形的應用——方向角問題,正確求得∠CBD以及∠CAB的度數是解決本題的關鍵.16、一【解析】

根據一元二次方程的定義和判別式的意義得到m≠0且△=(-2)2-4m×(-1)<0,所以m<-1,然后根據一次函數的性質判斷一次函數y=mx+m的圖象所在的象限即可.【詳解】∵關于x的一元二次方程mx2-2x-1=0無實數根,∴m≠0且△=(-2)2-4m×(-1)<0,∴m<-1,∴一次函數y=mx+m的圖象經過第二、三、四象限,不經過第一象限.故答案為一.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:當△>0時,方程有兩個不相等的實數根;當△=0時,方程有兩個相等的實數根;當△<0時,方程無實數根.也考查了一次函數的性質.17、3【解析】試題分析:設最大利潤為w元,則w=(x﹣30)(30﹣x)=﹣(x﹣3)3+3,∵30≤x≤30,∴當x=3時,二次函數有最大值3,故答案為3.考點:3.二次函數的應用;3.銷售問題.三、解答題(共7小題,滿分69分)18、(1)作圖見解析;(2)作圖見解析;綜合運用:(1)相切;(2)⊙O的半徑為.【解析】

綜合運用:(1)根據角平分線上的點到角兩邊的距離相等可得AB與⊙O的位置關系是相切;(2)首先根據勾股定理計算出AB的長,再設半徑為x,則OC=OD=x,BO=(12-x)再次利用勾股定理可得方程x2+82=(12-x)2,再解方程即可.【詳解】(1)①作∠BAC的平分線,交BC于點O;②以O為圓心,OC為半徑作圓.AB與⊙O的位置關系是相切.(2)相切;∵AC=5,BC=12,∴AD=5,AB==13,∴DB=AB-AD=13-5=8,設半徑為x,則OC=OD=x,BO=(12-x)x2+82=(12-x)2,解得:x=.答:⊙O的半徑為.【點睛】本題考查了1.作圖—復雜作圖;2.角平分線的性質;3.勾股定理;4.切線的判定.19、斜邊和一條直角邊分別相等的兩個直角三角形全等;全等三角形的對應角相等;兩點確定一條直線【解析】

利用“HL”判斷Rt△OPM≌Rt△OPN,從而得到∠POM=∠PON.【詳解】有畫法得OM=ON,∠OMP=∠ONP=90°,則可判定Rt△OPM≌Rt△OPN,所以∠POM=∠PON,即射線OP為∠AOB的平分線.故答案為斜邊和一條直角邊分別相等的兩個直角三角形全等;全等三角形的對應角相等;兩點確定一條直線.【點睛】本題考查了作圖?基本作圖,解題關鍵在于熟練掌握基本作圖作一條線段等于已知線段.20、【解析】

先根據分式的運算法則進行化簡,再代入使分式有意義的值計算.【詳解】解:原式.使原分式有意義的值可取2,當時,原式.【點睛】考核知識點:分式的化簡求值.掌握分式的運算法則是關鍵.21、(1)A種品牌計算器50元/個,B種品牌計算器60元/個;(2)y1=45x,y2=;(3)詳見解析.【解析】

(1)根據題意列出二元一次方程組并求解即可;(2)按照“購買所需費用=折扣×單價×數量”列式即可,注意B品牌計算器的采購要分0≤x≤10和x>10兩種情況考慮;(3)根據上問所求關系式,分別計算當x>15時,由y1=y2、y1>y2、y1<y2確定其分別對應的銷量范圍,從而確定方案.【詳解】(Ⅰ)設A、B兩種品牌的計算器的單價分別為a元、b元,根據題意得,,解得:,答:A種品牌計算器50元/個,B種品牌計算器60元/個;(Ⅱ)A品牌:y1=50x?0.9=45x;B品牌:①當0≤x≤10時,y2=60x,②當x>10時,y2=10×60+60×(x﹣10)×0.7=42x+180,綜上所述:y1=45x,y2=;(Ⅲ)當y1=y2時,45x=42x+180,解得x=60,即購買60個計算器時,兩種品牌都一樣;當y1>y2時,45x>42x+180,解得x>60,即購買超過60個計算器時,B品牌更合算;當y1<y2時,45x<42x+180,解得x<60,即購買不足60個計算器時,A品牌更合算,當購買數量為15時,顯然購買A品牌更劃算.【點睛】本題考查了二元一次方程組的應用.22、(1)10,1;(2)快車速度是2千米/小時;(3)從兩車相遇到快車到達甲地時y與x之間的函數關系式為y=150x﹣10;(4)當x=2小時或x=4小時時,兩車相距300千米.【解析】

(1)由當x=0時y=10可得出甲乙兩地間距,再利用速度=兩地間距÷慢車行駛的時間,即可求出慢車的速度;(2)設快車的速度為a千米/小時,根據兩地間距=兩車速度之和×相遇時間,即可得出關于a的一元一次方程,解之即可得出結論;(3)分別求出快車到達甲地的時間及快車到達甲地時兩車之間的間距,根據函數圖象上點的坐標,利用待定系數法即可求出該函數關系式;(4)利用待定系數法求出當0≤x≤4時y與x之間的函數關系式,將y=300分別代入0≤x≤4時及4≤x≤時的函數關系式中求出x值,此題得解.【詳解】解:(1)∵當x=0時,y=10,∴甲乙兩地相距10千米.10÷10=1(千米/小時).故答案為10;1.(2)設快車的速度為a千米/小時,根據題意得:4(1+a)=10,解得:a=2.答:快車速度是2千米/小時.(3)快車到達甲地的時間為10÷2=(小時),當x=時,兩車之間的距離為1×=400(千米).設當4≤x≤時,y與x之間的函數關系式為y=kx+b(k≠0),∵該函數圖象經過點(4,0)和(,400),∴,解得:,∴從兩車相遇到快車到達甲地時y與x之間的函數關系式為y=150x﹣10.(4)設當0≤x≤4時,y與x之間的函數關系式為y=mx+n(m≠0),∵該函數圖象經過點(0,10)和(4,0),∴,解得:,∴y與x之間的函數關系式為y=﹣150x+10.當y=300時,有﹣150x+10=300或150x﹣10=300,解得:x=2或x=4.∴當x=2小時或x=4小時時,兩車相距300千米.【點睛】本題考查了待定系數法求一次函數解析式、一元一次方程的應用以及一次函數圖象上點的坐標特征,解題的關鍵是:(1)利用速度=兩地間距÷慢車行駛的時間,求出慢車的速度;(2)根據兩地間距=兩車速度之和×相遇

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論