




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.甲、乙、丙、丁四位同學高考之后計劃去三個不同社區(qū)進行幫扶活動,每人只能去一個社區(qū),每個社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為()A.8 B.7 C.6 D.52.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或13.已知平行于軸的直線分別交曲線于兩點,則的最小值為()A. B. C. D.4.阿基米德(公元前287年—公元前212年),偉大的古希臘哲學家、數(shù)學家和物理學家,他死后的墓碑上刻著一個“圓柱容球”的立體幾何圖形,為紀念他發(fā)現(xiàn)“圓柱內(nèi)切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內(nèi)切球體積為()A. B. C. D.5.已知集合,集合,則()A. B. C. D.6.已知函數(shù)的圖象與直線的相鄰交點間的距離為,若定義,則函數(shù),在區(qū)間內(nèi)的圖象是()A. B.C. D.7.我國古代數(shù)學著作《九章算術》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.1008.為虛數(shù)單位,則的虛部為()A. B. C. D.9.已知我市某居民小區(qū)戶主人數(shù)和戶主對戶型結構的滿意率分別如圖和如圖所示,為了解該小區(qū)戶主對戶型結構的滿意程度,用分層抽樣的方法抽取的戶主進行調(diào)查,則樣本容量和抽取的戶主對四居室滿意的人數(shù)分別為A.240,18 B.200,20C.240,20 D.200,1810.已知,則的大小關系為A. B. C. D.11.已知,則()A. B. C. D.12.已知,復數(shù),,且為實數(shù),則()A. B. C.3 D.-3二、填空題:本題共4小題,每小題5分,共20分。13.如圖,直三棱柱中,,,,P是的中點,則三棱錐的體積為________.14.某校名學生參加軍事冬令營活動,活動期間各自扮演一名角色進行分組游戲,角色按級別從小到大共種,分別為士兵、排長、連長、營長、團長、旅長、師長、軍長和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級別連續(xù)的個不同角色.已知這名學生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學生,將這名學生分成組進行游戲,則新加入的學生可以扮演的角色的種數(shù)為________.15.(5分)在平面直角坐標系中,過點作傾斜角為的直線,已知直線與圓相交于兩點,則弦的長等于____________.16.已知數(shù)列滿足:,,若對任意的正整數(shù)均有,則實數(shù)的最大值是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某商場以分期付款方式銷售某種商品,根據(jù)以往資料統(tǒng)計,顧客購買該商品選擇分期付款的期數(shù)的分布列為:2340.4其中,(Ⅰ)求購買該商品的3位顧客中,恰有2位選擇分2期付款的概率;(Ⅱ)商場銷售一件該商品,若顧客選擇分2期付款,則商場獲得利潤l00元,若顧客選擇分3期付款,則商場獲得利潤150元,若顧客選擇分4期付款,則商場獲得利潤200元.商場銷售兩件該商品所獲的利潤記為(單位:元)(?。┣蟮姆植剂校唬áⅲ┤?,求的數(shù)學期望的最大值.18.(12分)在中,內(nèi)角的邊長分別為,且.(1)若,,求的值;(2)若,且的面積,求和的值.19.(12分)某機構組織的家庭教育活動上有一個游戲,每次由一個小孩與其一位家長參與,測試家長對小孩飲食習慣的了解程度.在每一輪游戲中,主持人給出A,B,C,D四種食物,要求小孩根據(jù)自己的喜愛程度對其排序,然后由家長猜測小孩的排序結果.設小孩對四種食物排除的序號依次為xAxBxCxD,家長猜測的序號依次為yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四個數(shù)字的一種排列.定義隨機變量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X來衡量家長對小孩飲食習慣的了解程度.(1)若參與游戲的家長對小孩的飲食習慣完全不了解.(ⅰ)求他們在一輪游戲中,對四種食物排出的序號完全不同的概率;(ⅱ)求X的分布列(簡要說明方法,不用寫出詳細計算過程);(2)若有一組小孩和家長進行來三輪游戲,三輪的結果都滿足X<4,請判斷這位家長對小孩飲食習慣是否了解,說明理由.20.(12分)2019年12月以來,湖北省武漢市持續(xù)開展流感及相關疾病監(jiān)測,發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID—19),簡稱“新冠肺炎”.下圖是2020年1月15日至1月24日累計確診人數(shù)隨時間變化的散點圖.為了預測在未釆取強力措施下,后期的累計確診人數(shù),建立了累計確診人數(shù)y與時間變量t的兩個回歸模型,根據(jù)1月15日至1月24日的數(shù)據(jù)(時間變量t的值依次1,2,…,10)建立模型和.(1)根據(jù)散點圖判斷,與哪一個適宜作為累計確診人數(shù)y與時間變量t的回歸方程類型?(給出判斷即可,不必說明理由)(2根據(jù)(1)的判斷結果及附表中數(shù)據(jù),建立y關于x的回歸方程;(3)以下是1月25日至1月29日累計確診人數(shù)的真實數(shù)據(jù),根據(jù)(2)的結果回答下列問題:時間1月25日1月26日1月27日1月28日1月29日累計確診人數(shù)的真實數(shù)據(jù)19752744451559747111(ⅰ)當1月25日至1月27日這3天的誤差(模型預測數(shù)據(jù)與真實數(shù)據(jù)差值的絕對值與真實數(shù)據(jù)的比值)都小于0.1則認為模型可靠,請判斷(2)的回歸方程是否可靠?(ⅱ)2020年1月24日在人民政府的強力領導下,全國人民共同采取了強力的預防“新冠肺炎”的措施,若采取措施5天后,真實數(shù)據(jù)明顯低于預測數(shù)據(jù),則認為防護措施有效,請判斷預防措施是否有效?附:對于一組數(shù)據(jù)(,,……,,其回歸直線的斜率和截距的最小二乘估計分別為,.參考數(shù)據(jù):其中,.5.53901938576403152515470010015022533850721.(12分)近年來,隨著“霧霾”天出現(xiàn)的越來越頻繁,很多人為了自己的健康,外出時選擇戴口罩,在一項對人們霧霾天外出時是否戴口罩的調(diào)查中,共調(diào)查了人,其中女性人,男性人,并根據(jù)統(tǒng)計數(shù)據(jù)畫出等高條形圖如圖所示:(1)利用圖形判斷性別與霧霾天外出戴口罩是否有關系并說明理由;(2)根據(jù)統(tǒng)計數(shù)據(jù)建立一個列聯(lián)表;(3)能否在犯錯誤的概率不超過的前提下認為性別與霧霾天外出戴口罩的關系.附:22.(10分)傳染病的流行必須具備的三個基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個環(huán)節(jié)必須同時存在,方能構成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應該佩戴口罩.某地區(qū)已經(jīng)出現(xiàn)了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識和防控情況,用分層抽樣的方法從全體居民中抽出一個容量為100的樣本,統(tǒng)計樣本中每個人出行是否會佩戴口罩的情況,得到下面列聯(lián)表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握認為是否會佩戴口罩出行的行為與年齡有關?(2)用樣本估計總體,若從該地區(qū)出行不戴口罩的居民中隨機抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】根據(jù)題意滿足條件的安排為:A(甲,乙)B(丙)C(?。?;A(甲,乙)B(?。〤(丙);A(甲,丙)B(丁)C(乙);A(甲,?。〣(丙)C(乙);A(甲)B(丙,?。〤(乙);A(甲)B(?。〤(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.2.D【解析】
求得直線的斜率,利用曲線的導數(shù),求得切點坐標,代入直線方程,求得的值.【詳解】直線的斜率為,對于,令,解得,故切點為,代入直線方程得,解得或1.故選:D【點睛】本小題主要考查根據(jù)切線方程求參數(shù),屬于基礎題.3.A【解析】
設直線為,用表示出,,求出,令,利用導數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設直線為,則,,而滿足,那么設,則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點睛】本題考查導數(shù)知識的運用:求單調(diào)區(qū)間和極值、最值,考查化簡整理的運算能力,正確求導確定函數(shù)的最小值是關鍵,屬于中檔題.4.D【解析】
設圓柱的底面半徑為,則其母線長為,由圓柱的表面積求出,代入圓柱的體積公式求出其體積,結合題中的結論即可求出該圓柱的內(nèi)切球體積.【詳解】設圓柱的底面半徑為,則其母線長為,因為圓柱的表面積公式為,所以,解得,因為圓柱的體積公式為,所以,由題知,圓柱內(nèi)切球的體積是圓柱體積的,所以所求圓柱內(nèi)切球的體積為.故選:D【點睛】本題考查圓柱的軸截面及表面積和體積公式;考查運算求解能力;熟練掌握圓柱的表面積和體積公式是求解本題的關鍵;屬于中檔題.5.C【解析】
求出集合的等價條件,利用交集的定義進行求解即可.【詳解】解:∵,,∴,故選:C.【點睛】本題主要考查了對數(shù)的定義域與指數(shù)不等式的求解以及集合的基本運算,屬于基礎題.6.A【解析】
由題知,利用求出,再根據(jù)題給定義,化簡求出的解析式,結合正弦函數(shù)和正切函數(shù)圖象判斷,即可得出答案.【詳解】根據(jù)題意,的圖象與直線的相鄰交點間的距離為,所以的周期為,則,所以,由正弦函數(shù)和正切函數(shù)圖象可知正確.故選:A.【點睛】本題考查三角函數(shù)中正切函數(shù)的周期和圖象,以及正弦函數(shù)的圖象,解題關鍵是對新定義的理解.7.B【解析】
根據(jù)程序框圖中程序的功能,可以列方程計算.【詳解】由題意,.故選:B.【點睛】本題考查程序框圖,讀懂程序的功能是解題關鍵.8.C【解析】
利用復數(shù)的運算法則計算即可.【詳解】,故虛部為.故選:C.【點睛】本題考查復數(shù)的運算以及復數(shù)的概念,注意復數(shù)的虛部為,不是,本題為基礎題,也是易錯題.9.A【解析】
利用統(tǒng)計圖結合分層抽樣性質(zhì)能求出樣本容量,利用條形圖能求出抽取的戶主對四居室滿意的人數(shù).【詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶主對四居室滿意的人數(shù)為:故選A.【點睛】本題考查樣本容量和抽取的戶主對四居室滿意的人數(shù)的求法,是基礎題,解題時要認真審題,注意統(tǒng)計圖的性質(zhì)的合理運用.10.D【解析】
分析:由題意結合對數(shù)的性質(zhì),對數(shù)函數(shù)的單調(diào)性和指數(shù)的性質(zhì)整理計算即可確定a,b,c的大小關系.詳解:由題意可知:,即,,即,,即,綜上可得:.本題選擇D選項.點睛:對于指數(shù)冪的大小的比較,我們通常都是運用指數(shù)函數(shù)的單調(diào)性,但很多時候,因冪的底數(shù)或指數(shù)不相同,不能直接利用函數(shù)的單調(diào)性進行比較.這就必須掌握一些特殊方法.在進行指數(shù)冪的大小比較時,若底數(shù)不同,則首先考慮將其轉(zhuǎn)化成同底數(shù),然后再根據(jù)指數(shù)函數(shù)的單調(diào)性進行判斷.對于不同底而同指數(shù)的指數(shù)冪的大小的比較,利用圖象法求解,既快捷,又準確.11.D【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,即當?shù)讛?shù)大于1時單調(diào)遞增,當?shù)讛?shù)大于零小于1時單調(diào)遞減,對選項逐一驗證即可得到正確答案.【詳解】因為,所以,所以是減函數(shù),又因為,所以,,所以,,所以A,B兩項均錯;又,所以,所以C錯;對于D,,所以,故選D.【點睛】這個題目考查的是應用不等式的性質(zhì)和指對函數(shù)的單調(diào)性比較大小,兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關系,有時可以代入一些特殊的數(shù)據(jù)得到具體值,進而得到大小關系.12.B【解析】
把和代入再由復數(shù)代數(shù)形式的乘法運算化簡,利用虛部為0求得m值.【詳解】因為為實數(shù),所以,解得.【點睛】本題考查復數(shù)的概念,考查運算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
證明平面,于是,利用三棱錐的體積公式即可求解.【詳解】平面,平面,,又.平面,是的中點,.
故答案為:【點睛】本題考查了線面垂直的判定定理、三棱錐的體積公式,屬于基礎題.14.【解析】
對新加入的學生所扮演的角色進行分類討論,分析各種情況下個學生所扮演的角色的分組,綜合可得出結論.【詳解】依題意,名學生分成組,則一定是個人組和個人組.①若新加入的學生是士兵,則可以將這個人分組如下;名士兵;士兵、排長、連長各名;營長、團長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學生可以是士兵,由對稱性可知也可以是司令;②若新加入的學生是排長,則可以將這個人分組如下:名士兵;連長、營長、團長各名;旅長、師長、軍長各名;名司令;名排長.所以新加入的學生可以是排長,由對稱性可知也可以是軍長;③若新加入的學生是連長,則可以將這個人分組如下:名士兵;士兵、排長、連長各名;連長、營長、團長各名;旅長、師長、軍長各名;名司令.所以新加入的學生可以是連長,由對稱性可知也可以是師長;④若新加入的學生是營長,則可以將這個人分組如下:名士兵;排長、連長、營長各名;營長、團長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學生可以是營長,由對稱性可知也可以是旅長;⑤若新加入的學生是團長,則可以將這個人分組如下:名士兵;排長、連長、營長各名;旅長、師長、軍長各名;名司令;名團長.所以新加入的學生可以是團長.綜上所述,新加入學生可以扮演種角色.故答案為:.【點睛】本題考查分類計數(shù)原理的應用,解答的關鍵就是對新加入的學生所扮演的角色進行分類討論,屬于中等題.15.【解析】
方法一:依題意,知直線的方程為,代入圓的方程化簡得,解得或,從而得或,則.方法二:依題意,知直線的方程為,代入圓的方程化簡得,設,則,故.方法三:將圓的方程配方得,其半徑,圓心到直線的距離,則.16.2【解析】
根據(jù)遞推公式可考慮分析,再累加求出關于關于參數(shù)的關系,根據(jù)表達式的取值分析出,再用數(shù)學歸納法證明滿足條件即可.【詳解】因為,累加可得.若,注意到當時,,不滿足對任意的正整數(shù)均有.所以.當時,證明:對任意的正整數(shù)都有.當時,成立.假設當時結論成立,即,則,即結論對也成立.由數(shù)學歸納法可知,對任意的正整數(shù)都有.綜上可知,所求實數(shù)的最大值是2.故答案為:2【點睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解參數(shù)最值的問題,需要根據(jù)遞推公式累加求解,同時注意結合參數(shù)的范圍問題進行分析.屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)0.288(Ⅱ)(?。┮娊馕觯áⅲ?shù)學期望的最大值為280【解析】
(Ⅰ)根據(jù)題意,設購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,由獨立重復事件的特點得出,利用二項分布的概率公式,即可求出結果;(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,根據(jù)離散型分布求出概率和的分布列;(ⅱ)由題意知,,解得,根據(jù)的分布列,得出的數(shù)學期望,結合,即可算出的最大值.【詳解】解:(Ⅰ)設購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,則,則,故購買該商品的3位顧客中,恰有2位選擇分2期付款的概率為0.288.(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,,,,,的分布列為:2002503003504000.16(ⅱ),由題意知,,,,,又,即,解得,,,當時,的最大值為280,所以的數(shù)學期望的最大值為280.【點睛】本題考查獨立重復事件和二項分布的應用,以及離散型分布列和數(shù)學期望,考查計算能力.18.(1);(2).【解析】
(1)先由余弦定理求得,再由正弦定理計算即可得到所求值;
(2)運用二倍角的余弦公式和兩角和的正弦公式,化簡可得sinA+sinB=5sinC,運用正弦定理和三角形的面積公式可得a,b的方程組,解方程即可得到所求值.【詳解】解:(1)由余弦定理由正弦定理得(2)由已知得:所以------①又所以------②由①②解得【點睛】本題考查正弦定理、余弦定理和面積公式的運用,以及三角函數(shù)的恒等變換,考查化簡整理的運算能力,屬于中檔題.19.(1)(?。áⅲ┓植急硪娊馕?;(2)理由見解析【解析】
(1)(i)若家長對小孩子的飲食習慣完全不了解,則家長對小孩的排序是隨意猜測的,家長的排序有種等可能結果,利用列舉法求出其中滿足“家長的排序與對應位置的數(shù)字完全不同”的情況有9種,由此能求出他們在一輪游戲中,對四種食物排出的序號完全不同的概率.
(ii)根據(jù)(i)的分析,同樣只考慮小孩排序為1234的情況,家長的排序一共有24種情況,由此能求出X的分布列.
(2)假設家長對小孩的飲食習慣完全不了解,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結果都滿足“X<4”的概率為,這個結果發(fā)生的可能性很小,從而這位家長對小孩飲食習慣比較了解.【詳解】(1)(i)若家長對小孩子的飲食習慣完全不了解,則家長對小孩的排序是隨意猜測的,先考慮小孩的排序為xA,xB,xC,xD為1234的情況,家長的排序有=24種等可能結果,其中滿足“家長的排序與對應位置的數(shù)字完全不同”的情況有9種,分別為:2143,2341,2413,3142,3412,3421,4123,4312,4321,∴家長的排序與對應位置的數(shù)字完全不同的概率P=.基小孩對四種食物的排序是其他情況,只需將角標A,B,C,D按照小孩的順序調(diào)整即可,假設小孩的排序xA,xB,xC,xD為1423的情況,四種食物按1234的排列為ACDB,再研究yAyByCyD的情況即可,其實這樣處理后與第一種情況的計算結果是一致的,∴他們在一輪游戲中,對四種食物排出的序號完全不同的概率為.(ii)根據(jù)(i)的分析,同樣只考慮小孩排序為1234的情況,家長的排序一共有24種情況,列出所有情況,分別計算每種情況下的x的值,X的分布列如下表:X02468101214161820P(2)這位家長對小孩的飲食習慣比較了解.理由如下:假設家長對小孩的飲食習慣完全不了解,由(1)可知,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結果都滿足“X<4”的概率為()3=,這個結果發(fā)生的可能性很小,∴這位家長對小孩飲食習慣比較了解.【點睛】本題考查概率的求法,考查古典概型、排列組合、列舉法等基礎知識,考查運算求解能力,是中檔題.20.(1)適宜(2)(3)(?。┗貧w方程可靠(ⅱ)防護措施有效【解析】
(1)根據(jù)散點圖即可判斷出結果.(2)設,則,求出,再由回歸方程過
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 裝修提升工程合同范本
- 原水供水協(xié)議合同范本
- 廚房剪刀回購合同范本
- 勞務合同范例電工
- 勞務協(xié)議押金合同范本
- 化工單元操作模擬試題含答案
- 廠房建造木工施工合同范例
- 人保壽險合同范本
- 萬能實習心得體會
- 醫(yī)美廠家合同范例
- 2025年江蘇南京技師學院招聘工作人員19人高頻重點模擬試卷提升(共500題附帶答案詳解)
- 華東師大版七年級數(shù)學下冊“第1周周考”
- DBJ50-T-385-2023半柔性復合路面技術標準
- 職業(yè)院校教師人工智能素養(yǎng):內(nèi)涵流變、框架構建與生成路徑
- 如何在初中數(shù)學教學中提升學生的核心素養(yǎng)
- (完整版)小學一年級數(shù)學20以內(nèi)進退位加減法(1600道題)計算卡
- 2025年包頭鐵道職業(yè)技術學院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 2024年道路運輸企業(yè)安全生產(chǎn)管理人員證考試題庫
- 北京2024年北京市測繪設計研究院面向應屆生招聘筆試歷年參考題庫附帶答案詳解
- 2025年減速機齒輪項目投資可行性研究分析報告
- 走進李白校本 課程設計
評論
0/150
提交評論