新高考數(shù)學(xué)二輪考點(diǎn)培優(yōu)專題(精講+精練)28 立體幾何中的建系設(shè)點(diǎn)問(wèn)題(原卷版)_第1頁(yè)
新高考數(shù)學(xué)二輪考點(diǎn)培優(yōu)專題(精講+精練)28 立體幾何中的建系設(shè)點(diǎn)問(wèn)題(原卷版)_第2頁(yè)
新高考數(shù)學(xué)二輪考點(diǎn)培優(yōu)專題(精講+精練)28 立體幾何中的建系設(shè)點(diǎn)問(wèn)題(原卷版)_第3頁(yè)
新高考數(shù)學(xué)二輪考點(diǎn)培優(yōu)專題(精講+精練)28 立體幾何中的建系設(shè)點(diǎn)問(wèn)題(原卷版)_第4頁(yè)
新高考數(shù)學(xué)二輪考點(diǎn)培優(yōu)專題(精講+精練)28 立體幾何中的建系設(shè)點(diǎn)問(wèn)題(原卷版)_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

素養(yǎng)拓展28立體幾何中的建系設(shè)點(diǎn)問(wèn)題(精講+精練)一、知識(shí)點(diǎn)梳理一、知識(shí)點(diǎn)梳理一、建系有關(guān)的基礎(chǔ)儲(chǔ)備與垂直相關(guān)的定理與結(jié)論(1)線面垂直①如果一條直線與一個(gè)平面上的兩條相交直線垂直,則這條直線與該平面垂直②兩條平行線,如果其中一條與平面垂直,那么另外一條也與這個(gè)平面垂直③兩個(gè)平面垂直,則其中一個(gè)平面上垂直交線的直線與另一個(gè)平面垂直④直棱柱:側(cè)棱與底面垂直;⑤有一條側(cè)棱垂直于底面的椎體。⑥正三棱柱、正四棱柱:頂點(diǎn)在底面的投影為底面的中心。⑦側(cè)面與底面所成角均相等或側(cè)棱長(zhǎng)均相等可得頂點(diǎn)在底面的投影為底面的中心。(2)線線垂直(相交垂直)①正方形,矩形,直角梯形②等腰三角形底邊上的中線與底邊垂直(三線合一)③菱形的對(duì)角線相互垂直④勾股定理逆定理:若SKIPIF1<0,則SKIPIF1<0二、建立直角坐標(biāo)系的原則1.SKIPIF1<0軸的選取往往是比較容易的,依據(jù)的是線面垂直,即SKIPIF1<0軸要與坐標(biāo)平面SKIPIF1<0垂直,在幾何體中也是很直觀的,垂直底面高高向上的即是,而坐標(biāo)原點(diǎn)即為SKIPIF1<0軸與底面的交點(diǎn)2.SKIPIF1<0軸的選?。捍藶樽鴺?biāo)是否易于寫出的關(guān)鍵,有這么幾個(gè)原則值得參考:(1)盡可能的讓底面上更多的點(diǎn)位于SKIPIF1<0軸上(2)找角:SKIPIF1<0軸要相互垂直,所以要利用好底面中的垂直條件(3)找對(duì)稱關(guān)系:尋找底面上的點(diǎn)能否存在軸對(duì)稱特點(diǎn)3.常用的空間直角坐標(biāo)系滿足SKIPIF1<0軸成右手系,所以在標(biāo)SKIPIF1<0軸時(shí)要注意。4.同一個(gè)幾何體可以有不同的建系方法,其坐標(biāo)也會(huì)對(duì)應(yīng)不同。但是通過(guò)坐標(biāo)所得到的結(jié)論(位置關(guān)系,角)是一致的。5.解答題中,在建立空間直角坐標(biāo)系之前,要先證明所用坐標(biāo)軸為兩兩垂直(即一個(gè)線面垂直SKIPIF1<0底面兩條線垂直),這個(gè)過(guò)程不能省略。三、坐標(biāo)的書寫1.能夠直接寫出坐標(biāo)的點(diǎn)(1)坐標(biāo)軸上的點(diǎn),例如在正方體(長(zhǎng)度為1)中的SKIPIF1<0點(diǎn),坐標(biāo)特點(diǎn)如下:SKIPIF1<0軸:SKIPIF1<0SKIPIF1<0軸:SKIPIF1<0SKIPIF1<0軸:SKIPIF1<0(2)底面上的點(diǎn):坐標(biāo)均為SKIPIF1<0,即豎坐標(biāo)SKIPIF1<0,由于底面在作立體圖時(shí)往往失真,所以要快速正確寫出坐標(biāo),強(qiáng)烈建議在旁邊作出底面的平面圖進(jìn)行參考:以下圖為例:則可快速寫出SKIPIF1<0點(diǎn)的坐標(biāo),位置關(guān)系清晰明了SKIPIF1<02.空間中在底面投影為特殊位置的點(diǎn)如果SKIPIF1<0在底面的投影為SKIPIF1<0,那么SKIPIF1<0(即點(diǎn)與投影點(diǎn)的橫縱坐標(biāo)相同)這條規(guī)律出發(fā),在寫空間中的點(diǎn)時(shí),可看下在底面的投影點(diǎn),坐標(biāo)是否好寫。如果可以則直接確定了橫縱坐標(biāo),而豎坐標(biāo)為該點(diǎn)到底面的距離。例如:正方體中的SKIPIF1<0點(diǎn),其投影為SKIPIF1<0,而SKIPIF1<0所以SKIPIF1<0,而其到底面的距離為SKIPIF1<0,故坐標(biāo)為SKIPIF1<0以上兩個(gè)類型已經(jīng)可以囊括大多數(shù)幾何體中的點(diǎn),但總還有一些特殊點(diǎn),那么就要用到第三個(gè)方法:3.需要計(jì)算的點(diǎn)①中點(diǎn)坐標(biāo)公式:SKIPIF1<0,則SKIPIF1<0中點(diǎn)SKIPIF1<0②利用向量關(guān)系進(jìn)行計(jì)算(先設(shè)再求):向量坐標(biāo)化后,向量的關(guān)系也可轉(zhuǎn)化為坐標(biāo)的關(guān)系,進(jìn)而可以求出一些位置不好的點(diǎn)的坐標(biāo),方法通常是先設(shè)出所求點(diǎn)的坐標(biāo),再選取向量,利用向量關(guān)系解出變量的值,例如:求SKIPIF1<0點(diǎn)的坐標(biāo),如果使用向量計(jì)算,則設(shè)SKIPIF1<0,可直接寫出SKIPIF1<0,觀察向量SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0四、空間直角坐標(biāo)系建立的模型(1)墻角模型:已知條件中有過(guò)一點(diǎn)兩兩垂直的三條直線,就是墻角模型.建系:以該點(diǎn)為原點(diǎn),分別以兩兩垂直的三條直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系Oxyz,當(dāng)然條件不明顯時(shí),要先證明過(guò)一點(diǎn)的三條直線兩兩垂直(即一個(gè)線面垂直SKIPIF1<0面內(nèi)兩條線垂直),這個(gè)過(guò)程不能省略.然后建系.(2)垂面模型:已知條件中有一條直線垂直于一個(gè)平面,就是墻角模型.情形1垂下(上)模型:直線豎直,平面水平,大部分題目都是這種類型.如圖,此情形包括垂足在平面圖形的頂點(diǎn)處、垂足在平面圖形的邊上(中點(diǎn)多)和垂足在平面圖形的內(nèi)部三種情況.第一種建系方法為以垂足為坐標(biāo)原點(diǎn),垂線的向上方向?yàn)閦軸,平面圖形的一邊為x軸或y軸,在平面圖形中,過(guò)原點(diǎn)作x軸或y軸的垂線為y軸或x軸(其中很多題目是連接垂足與平面圖形的另一頂點(diǎn))建立空間直角坐標(biāo)系.如圖1-1第二種建系方法為以垂足為坐標(biāo)原點(diǎn),垂線的向上方向?yàn)閦軸,垂足所在的一邊為x軸或y軸,在平面圖形中,過(guò)原點(diǎn)作x軸或y軸的垂線為y軸或x軸(其中很多題目是連接垂足與平面圖形的另一頂點(diǎn))建立空間直角坐標(biāo)系.如圖1-2第三種建系方法為以垂足為坐標(biāo)原點(diǎn),垂線的向上方向?yàn)閦軸,連接垂足與平面圖形的一頂點(diǎn)所在直線為為x軸或y軸,在平面圖形中,過(guò)原點(diǎn)作x軸或y軸的垂線為y軸或x軸(其中很多題目是連接垂足與平面圖形的另一頂點(diǎn))建立空間直角坐標(biāo)系.如圖1-3SKIPIF1<0SKIPIF1<0圖1-1SKIPIF1<0SKIPIF1<0圖1-2SKIPIF1<0SKIPIF1<0SKIPIF1<0圖1-3情形2垂左(右)模型:直線水平,平面豎直,這種類型的題目很少.各種情況如圖,建系方法可類比情形1.SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0圖2-1圖2-2圖2-3情形3垂后(前)模型:直線水平,平面豎直,這種類型的題目很少.各種情況如圖,建系方法可類比情形1.SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0圖3-1圖3-2圖3-3二、題型精講精練二、題型精講精練【典例1】如圖,在等腰梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0,建立適當(dāng)?shù)闹苯亲鴺?biāo)系并確定各點(diǎn)坐標(biāo)。方案一:(選擇SKIPIF1<0為軸),連結(jié)SKIPIF1<0可知SKIPIF1<0SKIPIF1<0在SKIPIF1<0中SKIPIF1<0SKIPIF1<0由SKIPIF1<0可解得SKIPIF1<0SKIPIF1<0SKIPIF1<0平面SKIPIF1<0SKIPIF1<0,以SKIPIF1<0為坐標(biāo)軸如圖建系:SKIPIF1<0方案二(以SKIPIF1<0為軸):過(guò)SKIPIF1<0作SKIPIF1<0的垂線SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0SKIPIF1<0以SKIPIF1<0為坐標(biāo)軸如圖建系:(同方案一)計(jì)算可得:SKIPIF1<0SKIPIF1<0【典例2】如圖:已知SKIPIF1<0平面SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0上,且SKIPIF1<0,四邊形SKIPIF1<0為直角梯形,SKIPIF1<0,建立適當(dāng)?shù)淖鴺?biāo)系并求出各點(diǎn)坐標(biāo)解:SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0平面SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0兩兩垂直,如圖建系:SKIPIF1<0SKIPIF1<0SKIPIF1<0中:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0為等邊三角形SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0為等邊三角形SKIPIF1<0SKIPIF1<0SKIPIF1<0在底面SKIPIF1<0投影為SKIPIF1<0且SKIPIF1<0SKIPIF1<0綜上所述:SKIPIF1<0【題型訓(xùn)練-刷模擬】1.如圖所示,在三棱柱SKIPIF1<0中,點(diǎn)G、M分別是線段AD、BF的中點(diǎn).

(1)求證:SKIPIF1<0平面BEG;(2)若三棱柱SKIPIF1<0的側(cè)面ABCD和ADEF都是邊長(zhǎng)為2的正方形,平面SKIPIF1<0平面ADEF,求二面角SKIPIF1<0的余弦值;2.如圖所示,SKIPIF1<0為等邊三角形,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為線段SKIPIF1<0上一動(dòng)點(diǎn).

(1)若SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),證明:SKIPIF1<0.(2)若SKIPIF1<0,求二面角SKIPIF1<0的余弦值.3.如圖,在多面體SKIPIF1<0中,四邊形SKIPIF1<0是邊長(zhǎng)為4的菱形,SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0平面SKIPIF1<0.

(1)求證:平面SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0,點(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn),求二面角SKIPIF1<0的余弦值.4.如圖,三棱柱SKIPIF1<0的底面SKIPIF1<0是正三角形,側(cè)面SKIPIF1<0是菱形,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0分別是棱SKIPIF1<0的中點(diǎn).

(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0,求直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值.5.如圖所示,在圓錐SKIPIF1<0中,SKIPIF1<0為圓錐的頂點(diǎn),SKIPIF1<0為底面圓圓心,SKIPIF1<0是圓SKIPIF1<0的直徑,SKIPIF1<0為底面圓周上一點(diǎn),四邊形SKIPIF1<0是矩形.

(1)若點(diǎn)SKIPIF1<0是SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0,求三棱錐SKIPIF1<0的體積.6.)長(zhǎng)方形SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0為SKIPIF1<0中點(diǎn)(如圖1),將點(diǎn)SKIPIF1<0繞SKIPIF1<0旋轉(zhuǎn)至點(diǎn)SKIPIF1<0處,使平面SKIPIF1<0平面SKIPIF1<0(如圖2).

(1)求證:SKIPIF1<0;(2)點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,當(dāng)二面角SKIPIF1<0大小為SKIPIF1<0時(shí),求四棱錐SKIPIF1<0的體積.7.如圖,在圓錐SKIPIF1<0中,SKIPIF1<0為圓錐頂點(diǎn),SKIPIF1<0為圓錐底面的直徑,SKIPIF1<0為底面圓的圓心,SKIPIF1<0為底面圓周上一點(diǎn),四邊形SKIPIF1<0為矩形,且SKIPIF1<0,SKIPIF1<0.

(1)若SKIPIF1<0為SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0與平面SKIPIF1<0所成角為SKIPIF1<0,求二面角SKIPIF1<0的余弦值.8.如圖,在平面四邊形ABCD中,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,以BD為折痕把SKIPIF1<0和SKIPIF1<0向上折起,使點(diǎn)A到達(dá)點(diǎn)E的位置,點(diǎn)C到達(dá)點(diǎn)F的位置,且E,F(xiàn)不重合.

(1)求證:SKIPIF1<0;(2)若點(diǎn)G為SKIPIF1<0的重心(三條中線的交點(diǎn)),SKIPIF1<0平面ABD,求直線SKIPIF1<0與平面SKIPIF1<0所成角的余弦值.9.如圖,在三棱柱SKIPIF1<0中,側(cè)面SKIPIF1<0是菱形,且SKIPIF1<0,側(cè)面SKIPIF1<0是邊長(zhǎng)為SKIPIF1<0的正方形,側(cè)面SKIPIF1<0側(cè)面SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn).

(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)求平面SKIPIF1<0與平面SKIPIF1<0所成的銳二面角的余弦值.10.如圖所示,三棱柱SKIPIF1<0的所有棱長(zhǎng)均為1,SKIPIF1<0,SKIPIF1<0為直角.

(1)證明:平面SKIPIF1<0平面SKIPIF1<0;(2)設(shè)點(diǎn)SKIPIF1<0是棱SKIPIF1<0的中點(diǎn),求直線SKIPIF1<0與平面SKIPIF1<0所成角SKIPIF1<0的正弦值.11.如圖所示,在多面體SKIPIF1<0中,底面SKIPIF1<0為直角梯形,SKIPIF1<0,SKIPIF1<0,側(cè)面SKIPIF1<0為菱形,平面SKIPIF1<0平面SKIPIF1<0,M為棱SKIPIF1<0的中點(diǎn).(1)若點(diǎn)N為SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,求平面SKIPIF1<0與平面SKIPIF1<0夾角的余弦值.12.)在圖1中,四邊形ABCD為梯形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,過(guò)點(diǎn)A作SKIPIF1<0,交BC于E.現(xiàn)沿AE將△ABE折起,使得SKIPIF1<0,得到如圖2所示的四棱錐SKIPIF1<0,在圖2中解答下列兩問(wèn):

(1)求四棱錐SKIPIF1<0的體積;(2)若F在側(cè)棱BC上,SKIPIF1<0,求二面角SKIPIF1<0的大?。?3.如圖,在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的中點(diǎn),且沿SKIPIF1<0,SKIPIF1<0分別將SKIPIF1<0與SKIPIF1<0折起來(lái),使其頂點(diǎn)SKIPIF1<0與SKIPIF1<0重合于點(diǎn)SKIPIF1<0,若所得三棱錐SKIPIF1<0的頂點(diǎn)SKIPIF1<0在底面SKIPIF1<0內(nèi)的射影SKIPIF1<0恰為SKIPIF1<0的中點(diǎn).

(1)求三棱錐SKIPIF1<0的體積;(2)求折起前的SKIPIF1<0與側(cè)面SKIPIF1<0所成二面角的大小.14.如圖,在圓柱體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,劣弧SKIPIF1<0的長(zhǎng)為SKIPIF1<0,AB為圓O的直徑.

(1)在弧SKIPIF1<0上是否存在點(diǎn)C(C,SKIPIF1<0在平面SKIPIF1<0同側(cè)),使SKIPIF1<0,若存在,確定其位置,若不存在,說(shuō)明理由;(2)求二面角SKIPIF1<0的余弦值.15.如圖,在矩形SKIPIF1<0中,點(diǎn)SKIPIF1<0在邊SKIPIF1<0上,且滿足SKIPIF1<0,將SKIPIF1<0沿SKIPIF1<0向上翻折,使點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的位置,構(gòu)成四棱錐SKIPIF1<0.(1)若點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,且SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,試確定點(diǎn)SKIPIF1<0的位置;(2)若SKIPIF1<0,求銳二面角SKIPIF1<0的大小.16.如圖,SKIPIF1<0為圓錐的頂點(diǎn),SKIPIF1<0是圓錐底面的圓心,SKIPIF1<0為底面直徑,SKIPIF1<0為底面圓SKIPIF1<0的內(nèi)接正三角形,且邊長(zhǎng)為SKIPIF1<0,點(diǎn)SKIPIF1<0在母線SKIPIF1<0上,且SKIPIF1<0.

(1)求證:直線SKIPIF1<0平面SKIPIF1<0;(2)求證:平面SKIPIF1<0平面SKIPIF1<0;(3)若點(diǎn)SKIPIF1<0為線段SKIPIF1<0上的動(dòng)點(diǎn).當(dāng)直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值最大時(shí),求此時(shí)點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.17.如圖,在多面體SKIPIF1<0中,側(cè)面SKIPIF1<0為菱形,側(cè)面SKIPIF1<0為直角梯形,SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論