![2022年福建省閩侯縣第六中學(xué)高考數(shù)學(xué)二模試卷含解析_第1頁](http://file4.renrendoc.com/view2/M02/26/03/wKhkFma8Fo2ATjLBAAGpYfelrzM621.jpg)
![2022年福建省閩侯縣第六中學(xué)高考數(shù)學(xué)二模試卷含解析_第2頁](http://file4.renrendoc.com/view2/M02/26/03/wKhkFma8Fo2ATjLBAAGpYfelrzM6212.jpg)
![2022年福建省閩侯縣第六中學(xué)高考數(shù)學(xué)二模試卷含解析_第3頁](http://file4.renrendoc.com/view2/M02/26/03/wKhkFma8Fo2ATjLBAAGpYfelrzM6213.jpg)
![2022年福建省閩侯縣第六中學(xué)高考數(shù)學(xué)二模試卷含解析_第4頁](http://file4.renrendoc.com/view2/M02/26/03/wKhkFma8Fo2ATjLBAAGpYfelrzM6214.jpg)
![2022年福建省閩侯縣第六中學(xué)高考數(shù)學(xué)二模試卷含解析_第5頁](http://file4.renrendoc.com/view2/M02/26/03/wKhkFma8Fo2ATjLBAAGpYfelrzM6215.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線與直線則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.已知函數(shù),給出下列四個(gè)結(jié)論:①函數(shù)的值域是;②函數(shù)為奇函數(shù);③函數(shù)在區(qū)間單調(diào)遞減;④若對任意,都有成立,則的最小值為;其中正確結(jié)論的個(gè)數(shù)是()A. B. C. D.3.函數(shù)的圖象的大致形狀是()A. B. C. D.4.已知定義在上的偶函數(shù)滿足,且在區(qū)間上是減函數(shù),令,則的大小關(guān)系為()A. B.C. D.5.在關(guān)于的不等式中,“”是“恒成立”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.某人造地球衛(wèi)星的運(yùn)行軌道是以地心為一個(gè)焦點(diǎn)的橢圓,其軌道的離心率為,設(shè)地球半徑為,該衛(wèi)星近地點(diǎn)離地面的距離為,則該衛(wèi)星遠(yuǎn)地點(diǎn)離地面的距離為()A. B.C. D.7.下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是()A. B.C. D.8.已知復(fù)數(shù)(為虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)是()A. B. C. D.9.已知半徑為2的球內(nèi)有一個(gè)內(nèi)接圓柱,若圓柱的高為2,則球的體積與圓柱的體積的比為()A. B. C. D.10.若雙曲線的一條漸近線與圓至多有一個(gè)交點(diǎn),則雙曲線的離心率的取值范圍是()A. B. C. D.11.已知隨機(jī)變量X的分布列如下表:X01Pabc其中a,b,.若X的方差對所有都成立,則()A. B. C. D.12.記個(gè)兩兩無交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設(shè)函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間二、填空題:本題共4小題,每小題5分,共20分。13.《九章算術(shù)》中,將四個(gè)面都為直角三角形的四面體稱為鱉臑,如圖,在鱉臑中,平面,,且,過點(diǎn)分別作于點(diǎn),于點(diǎn),連接,則三棱錐的體積的最大值為__________.14.已知數(shù)列滿足,,若,則數(shù)列的前n項(xiàng)和______.15.的展開式中,項(xiàng)的系數(shù)是__________.16.從4名男生和3名女生中選出4名去參加一項(xiàng)活動,要求男生中的甲和乙不能同時(shí)參加,女生中的丙和丁至少有一名參加,則不同的選法種數(shù)為______.(用數(shù)字作答)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù)().(1)討論函數(shù)的單調(diào)性;(2)若關(guān)于x的方程有唯一的實(shí)數(shù)解,求a的取值范圍.18.(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)的圖象在處的切線方程;(2)討論函數(shù)的單調(diào)性;(3)當(dāng)時(shí),若方程有兩個(gè)不相等的實(shí)數(shù)根,求證:.19.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)的最小值為,求的最小值.20.(12分)已知函數(shù).(1)證明:函數(shù)在上存在唯一的零點(diǎn);(2)若函數(shù)在區(qū)間上的最小值為1,求的值.21.(12分)已知函數(shù),.(1)求證:在區(qū)間上有且僅有一個(gè)零點(diǎn),且;(2)若當(dāng)時(shí),不等式恒成立,求證:.22.(10分)已知三棱錐P-ABC(如圖一)的平面展開圖(如圖二)中,四邊形ABCD為邊長等于的正方形,和均為正三角形,在三棱錐P-ABC中:(1)證明:平面平面ABC;(2)若點(diǎn)M在棱PA上運(yùn)動,當(dāng)直線BM與平面PAC所成的角最大時(shí),求直線MA與平面MBC所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
利用充分必要條件的定義可判斷兩個(gè)條件之間的關(guān)系.【詳解】若,則,故或,當(dāng)時(shí),直線,直線,此時(shí)兩條直線平行;當(dāng)時(shí),直線,直線,此時(shí)兩條直線平行.所以當(dāng)時(shí),推不出,故“”是“”的不充分條件,當(dāng)時(shí),可以推出,故“”是“”的必要條件,故選:B.【點(diǎn)睛】本題考查兩條直線的位置關(guān)系以及必要不充分條件的判斷,前者應(yīng)根據(jù)系數(shù)關(guān)系來考慮,后者依據(jù)兩個(gè)條件之間的推出關(guān)系,本題屬于中檔題.2.C【解析】
化的解析式為可判斷①,求出的解析式可判斷②,由得,結(jié)合正弦函數(shù)得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數(shù),故②錯(cuò)誤;當(dāng)時(shí),,單調(diào)遞減,故③正確;若對任意,都有成立,則為最小值點(diǎn),為最大值點(diǎn),則的最小值為,故④正確.故選:C.【點(diǎn)睛】本題考查三角函數(shù)的綜合運(yùn)用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問題.3.B【解析】
根據(jù)函數(shù)奇偶性,可排除D;求得及,由導(dǎo)函數(shù)符號可判斷在上單調(diào)遞增,即可排除AC選項(xiàng).【詳解】函數(shù)易知為奇函數(shù),故排除D.又,易知當(dāng)時(shí),;又當(dāng)時(shí),,故在上單調(diào)遞增,所以,綜上,時(shí),,即單調(diào)遞增.又為奇函數(shù),所以在上單調(diào)遞增,故排除A,C.故選:B【點(diǎn)睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,導(dǎo)函數(shù)性質(zhì)與函數(shù)圖象關(guān)系,屬于中檔題.4.C【解析】
可設(shè),根據(jù)在上為偶函數(shù)及便可得到:,可設(shè),,且,根據(jù)在上是減函數(shù)便可得出,從而得出在上單調(diào)遞增,再根據(jù)對數(shù)的運(yùn)算得到、、的大小關(guān)系,從而得到的大小關(guān)系.【詳解】解:因?yàn)椋?,又,設(shè),根據(jù)條件,,;若,,且,則:;在上是減函數(shù);;;在上是增函數(shù);所以,故選:C【點(diǎn)睛】考查偶函數(shù)的定義,減函數(shù)及增函數(shù)的定義,根據(jù)單調(diào)性定義判斷一個(gè)函數(shù)單調(diào)性的方法和過程:設(shè),通過條件比較與,函數(shù)的單調(diào)性的應(yīng)用,屬于中檔題.5.C【解析】
討論當(dāng)時(shí),是否恒成立;討論當(dāng)恒成立時(shí),是否成立,即可選出正確答案.【詳解】解:當(dāng)時(shí),,由開口向上,則恒成立;當(dāng)恒成立時(shí),若,則不恒成立,不符合題意,若時(shí),要使得恒成立,則,即.所以“”是“恒成立”的充要條件.故選:C.【點(diǎn)睛】本題考查了命題的關(guān)系,考查了不等式恒成立問題.對于探究兩個(gè)命題的關(guān)系時(shí),一般分成兩步,若,則推出是的充分條件;若,則推出是的必要條件.6.A【解析】
由題意畫出圖形,結(jié)合橢圓的定義,結(jié)合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛(wèi)星遠(yuǎn)地點(diǎn)離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長半軸),設(shè)衛(wèi)星近地點(diǎn),遠(yuǎn)地點(diǎn)離地面距離分別為r,n,如圖:則所以,,故選:A【點(diǎn)睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關(guān)鍵,屬于中檔題.7.C【解析】
對選項(xiàng)逐個(gè)驗(yàn)證即得答案.【詳解】對于,,是偶函數(shù),故選項(xiàng)錯(cuò)誤;對于,,定義域?yàn)?,在上不是單調(diào)函數(shù),故選項(xiàng)錯(cuò)誤;對于,當(dāng)時(shí),;當(dāng)時(shí),;又時(shí),.綜上,對,都有,是奇函數(shù).又時(shí),是開口向上的拋物線,對稱軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項(xiàng)正確;對于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項(xiàng)錯(cuò)誤.故選:.【點(diǎn)睛】本題考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.8.A【解析】
直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,求得的坐標(biāo)得出答案.【詳解】解:,在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)是.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.9.D【解析】
分別求出球和圓柱的體積,然后可得比值.【詳解】設(shè)圓柱的底面圓半徑為,則,所以圓柱的體積.又球的體積,所以球的體積與圓柱的體積的比,故選D.【點(diǎn)睛】本題主要考查幾何體的體積求解,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).10.C【解析】
求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點(diǎn)到直線的距離公式可得的范圍,再由離心率公式計(jì)算即可得到所求范圍.【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點(diǎn)睛】本題考查雙曲線的離心率的范圍,注意運(yùn)用圓心到漸近線的距離不小于半徑,考查化簡整理的運(yùn)算能力,屬于中檔題.11.D【解析】
根據(jù)X的分布列列式求出期望,方差,再利用將方差變形為,從而可以利用二次函數(shù)的性質(zhì)求出其最大值為,進(jìn)而得出結(jié)論.【詳解】由X的分布列可得X的期望為,又,所以X的方差,因?yàn)?所以當(dāng)且僅當(dāng)時(shí),取最大值,又對所有成立,所以,解得,故選:D.【點(diǎn)睛】本題綜合考查了隨機(jī)變量的期望?方差的求法,結(jié)合了概率?二次函數(shù)等相關(guān)知識,需要學(xué)生具備一定的計(jì)算能力,屬于中檔題.12.D【解析】
可判斷函數(shù)為奇函數(shù),先討論當(dāng)且時(shí)的導(dǎo)數(shù)情況,再畫出函數(shù)大致圖形,將所求區(qū)間端點(diǎn)值分別看作對應(yīng)常函數(shù),再由圖形確定具體自變量范圍即可求解【詳解】當(dāng)且時(shí),.令得.可得和的變化情況如下表:令,則原不等式變?yōu)椋蓤D像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【點(diǎn)睛】本題考查由函數(shù)的奇偶性,單調(diào)性求解對應(yīng)自變量范圍,導(dǎo)數(shù)法研究函數(shù)增減性,數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于難題二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由已知可得△AEF、△PEF均為直角三角形,且AF=2,由基本不等式可得當(dāng)AE=EF=2時(shí),△AEF的面積最大,然后由棱錐體積公式可求得體積最大值.【詳解】由PA⊥平面ABC,得PA⊥BC,又AB⊥BC,且PA∩AB=A,∴BC⊥平面PAB,則BC⊥AE,又PB⊥AE,則AE⊥平面PBC,于是AE⊥EF,且AE⊥PC,結(jié)合條件AF⊥PC,得PC⊥平面AEF,∴△AEF、△PEF均為直角三角形,由已知得AF=2,而S△AEF=(AE2+EF2)=AF2=2,當(dāng)且僅當(dāng)AE=EF=2時(shí),取“=”,此時(shí)△AEF的面積最大,三棱錐P﹣AEF的體積的最大值為:VP﹣AEF===.故答案為【點(diǎn)睛】本題主要考查直線與平面垂直的判定,基本不等式的應(yīng)用,同時(shí)考查了空間想象能力、計(jì)算能力和邏輯推理能力,屬于中檔題.14.【解析】
,求得的通項(xiàng),進(jìn)而求得,得通項(xiàng)公式,利用等比數(shù)列求和即可.【詳解】由題為等差數(shù)列,∴,∴,∴,∴,故答案為【點(diǎn)睛】本題考查求等差數(shù)列數(shù)列通項(xiàng),等比數(shù)列求和,熟記等差等比性質(zhì),熟練運(yùn)算是關(guān)鍵,是基礎(chǔ)題.15.240【解析】
利用二項(xiàng)式展開式的通項(xiàng)公式,令x的指數(shù)等于3,計(jì)算展開式中含有項(xiàng)的系數(shù)即可.【詳解】由題意得:,只需,可得,代回原式可得,故答案:240.【點(diǎn)睛】本題主要考查二項(xiàng)式展開式的通項(xiàng)公式及簡單應(yīng)用,相對不難.16.1【解析】
由排列組合及分類討論思想分別討論:①設(shè)甲參加,乙不參加,②設(shè)乙參加,甲不參加,③設(shè)甲,乙都不參加,可得不同的選法種數(shù)為9+9+5=1,得解.【詳解】①設(shè)甲參加,乙不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,②設(shè)乙參加,甲不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,③設(shè)甲,乙都不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為5,綜合①②③得:不同的選法種數(shù)為9+9+5=1,故答案為:1.【點(diǎn)睛】本題考查了排列組合及分類討論思想,準(zhǔn)確分類及計(jì)算是關(guān)鍵,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)當(dāng)時(shí),遞增區(qū)間時(shí),無遞減區(qū)間,當(dāng)時(shí),遞增區(qū)間時(shí),遞減區(qū)間時(shí);(2)或.【解析】
(1)求出,對分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標(biāo)準(zhǔn),若不恒成立,求解,即可得出結(jié)論;(2)有解,即,令,轉(zhuǎn)化求函數(shù)只有一個(gè)實(shí)數(shù)解,根據(jù)(1)中的結(jié)論,即可求解.【詳解】(1),當(dāng)時(shí),恒成立,當(dāng)時(shí),,綜上,當(dāng)時(shí),遞增區(qū)間時(shí),無遞減區(qū)間,當(dāng)時(shí),遞增區(qū)間時(shí),遞減區(qū)間時(shí);(2),令,原方程只有一個(gè)解,只需只有一個(gè)解,即求只有一個(gè)零點(diǎn)時(shí),的取值范圍,由(1)得當(dāng)時(shí),在單調(diào)遞增,且,函數(shù)只有一個(gè)零點(diǎn),原方程只有一個(gè)解,當(dāng)時(shí),由(1)得在出取得極小值,也是最小值,當(dāng)時(shí),,此時(shí)函數(shù)只有一個(gè)零點(diǎn),原方程只有一個(gè)解,當(dāng)且遞增區(qū)間時(shí),遞減區(qū)間時(shí);,當(dāng),有兩個(gè)零點(diǎn),即原方程有兩個(gè)解,不合題意,所以的取值范圍是或.【點(diǎn)睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到單調(diào)性、零點(diǎn)、極值最值,考查分類討論和等價(jià)轉(zhuǎn)化思想,屬于中檔題.18.(1);(2)當(dāng)時(shí),在上是減函數(shù);當(dāng)時(shí),在上是增函數(shù);(3)證明見解析.【解析】
(1)當(dāng)時(shí),,求得其導(dǎo)函數(shù),,可求得函數(shù)的圖象在處的切線方程;(2)由已知得,得出導(dǎo)函數(shù),并得出導(dǎo)函數(shù)取得正負(fù)的區(qū)間,可得出函數(shù)的單調(diào)性;(3)當(dāng)時(shí),,,由(2)得的單調(diào)區(qū)間,以當(dāng)方程有兩個(gè)不相等的實(shí)數(shù)根,不妨設(shè),且有,,構(gòu)造函數(shù),分析其導(dǎo)函數(shù)的正負(fù)得出函數(shù)的單調(diào)性,得出其最值,所證的不等式可得證.【詳解】(1)當(dāng)時(shí),,所以,,所以函數(shù)的圖象在處的切線方程為,即;(2)由已知得,,令,得,所以當(dāng)時(shí),,當(dāng)時(shí),,所以在上是減函數(shù),在上是增函數(shù);(3)當(dāng)時(shí),,,由(2)得在上單調(diào)遞減,在單調(diào)遞增,所以,且時(shí),,當(dāng)時(shí),,,所以當(dāng)方程有兩個(gè)不相等的實(shí)數(shù)根,不妨設(shè),且有,,構(gòu)造函數(shù),則,當(dāng)時(shí),所以,在上單調(diào)遞減,且,,由,在上單調(diào)遞增,.所以.【點(diǎn)睛】本題考查運(yùn)用導(dǎo)函數(shù)求函數(shù)在某點(diǎn)的切線方程,討論函數(shù)的單調(diào)性,以及證明不等式,關(guān)鍵在于構(gòu)造適當(dāng)?shù)暮瘮?shù),得出其導(dǎo)函數(shù)的正負(fù),得出所構(gòu)造的函數(shù)的單調(diào)性,屬于難度題.19.(1)(2)【解析】
(1)用分類討論思想去掉絕對值符號后可解不等式;(2)由(1)得的最小值為4,則由,代換后用基本不等式可得最小值.【詳解】解:(1)討論:當(dāng)時(shí),,即,此時(shí)無解;當(dāng)時(shí),;當(dāng)時(shí),.所求不等式的解集為(2)分析知,函數(shù)的最小值為4,當(dāng)且僅當(dāng)時(shí)等號成立.的最小值為4.【點(diǎn)睛】本題考查解絕對值不等式,考查用基本不等式求最小值.解絕對值不等式的方法是分類討論思想.20.(1)證明見解析;(2)【解析】
(1)求解出導(dǎo)函數(shù),分析導(dǎo)函數(shù)的單調(diào)性,再結(jié)合零點(diǎn)的存在性定理說明在上存在唯一的零點(diǎn)即可;(2)根據(jù)導(dǎo)函數(shù)零點(diǎn),判斷出的單調(diào)性,從而可確定,利用以及的單調(diào)性,可確定出之間的關(guān)系,從而的值可求.【詳解】(1)證明:∵,∴.∵在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,∴函數(shù)在上單調(diào)遞增.又,令,,則在上單調(diào)遞減,,故.令,則所以函數(shù)在上存在唯一的零點(diǎn).(2)解:由(1)可知存在唯一的,使得,即(*).函數(shù)在上單調(diào)遞增.∴當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.∴.由(*)式得.∴,顯然是方程的解.又∵是單調(diào)遞減函數(shù),方程有且僅有唯一的解,把代入(*)式,得,∴,即所求實(shí)數(shù)的值為.【點(diǎn)睛】本題考查函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用,其中涉及到判斷函數(shù)在給定區(qū)間上的零點(diǎn)個(gè)數(shù)以及根據(jù)函數(shù)的最值求解參數(shù),難度較難.(1)判斷函數(shù)的零點(diǎn)個(gè)數(shù)時(shí),可結(jié)合函數(shù)的單調(diào)性以及零點(diǎn)的存在性定理進(jìn)行判斷;(2)函數(shù)的“隱零點(diǎn)”問題,可通過“設(shè)而不求”的思想進(jìn)行分析.21.(1)詳見解析;(2)詳見解析.【解析】
(1)利用求導(dǎo)數(shù),判斷在區(qū)間上的單調(diào)性,然后再證異號,即可證明結(jié)論;(2)當(dāng)時(shí),不等式恒成立,分離參數(shù)只需時(shí),恒成立,設(shè)(),需,根據(jù)(1)中的結(jié)論先求出,再構(gòu)造函數(shù)結(jié)合
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 宣傳物料印刷合同范本3篇
- 《數(shù)據(jù)安全法》考試參考題庫100題(含答案)
- 2025年梧州職業(yè)學(xué)院高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 全球‘最優(yōu)旅行小鎮(zhèn)’課件展示:探索與發(fā)現(xiàn)鄉(xiāng)村之美
- 2025科學(xué)儀器行業(yè)未來發(fā)展趨勢與機(jī)會
- 中班區(qū)角創(chuàng)意活動方案五篇
- 養(yǎng)老行業(yè)的未來:2025年發(fā)展趨勢與市場展望
- 借款簡單的合同范本
- 旅游規(guī)劃服務(wù)合同
- 反擔(dān)保合同以及借款擔(dān)保合同范文
- 2024年全國現(xiàn)場流行病學(xué)調(diào)查職業(yè)技能競賽考試題庫-上部分(600題)
- 安徽省蚌埠市2025屆高三上學(xué)期第一次教學(xué)質(zhì)量檢查考試(1月)數(shù)學(xué)試題(蚌埠一模)(含答案)
- 2025年春節(jié)安全專題培訓(xùn)(附2024年10起重特大事故案例)
- 2025年江蘇太倉水務(wù)集團(tuán)招聘筆試參考題庫含答案解析
- 遼寧省沈陽名校2025屆高三第一次模擬考試英語試卷含解析
- 《中小學(xué)校園食品安全和膳食經(jīng)費(fèi)管理工作指引》專題知識培訓(xùn)
- 2024年新疆區(qū)公務(wù)員錄用考試《行測》真題及答案解析
- 第三章-自然語言的處理(共152張課件)
- 行政事業(yè)單位國有資產(chǎn)管理辦法
- 六年級口算訓(xùn)練每日100道
- 高一生物生物必修一全冊考試題帶答題紙答案
評論
0/150
提交評論