2024-2025學年江蘇省鹽城市鹽城中學高三畢業(yè)考試數(shù)學試題含解析_第1頁
2024-2025學年江蘇省鹽城市鹽城中學高三畢業(yè)考試數(shù)學試題含解析_第2頁
2024-2025學年江蘇省鹽城市鹽城中學高三畢業(yè)考試數(shù)學試題含解析_第3頁
2024-2025學年江蘇省鹽城市鹽城中學高三畢業(yè)考試數(shù)學試題含解析_第4頁
2024-2025學年江蘇省鹽城市鹽城中學高三畢業(yè)考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024-2025學年江蘇省鹽城市鹽城中學高三畢業(yè)考試數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù).設,若對任意不相等的正數(shù),,恒有,則實數(shù)a的取值范圍是()A. B.C. D.2.命題:存在實數(shù),對任意實數(shù),使得恒成立;:,為奇函數(shù),則下列命題是真命題的是()A. B. C. D.3.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.4.已知雙曲線的一個焦點與拋物線的焦點重合,則雙曲線的離心率為()A. B. C.3 D.45.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β6.已知拋物線的焦點為,為拋物線上一點,,當周長最小時,所在直線的斜率為()A. B. C. D.7.已知函數(shù)則函數(shù)的圖象的對稱軸方程為()A. B.C. D.8.已知,則不等式的解集是()A. B. C. D.9.已知直線和平面,若,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.不充分不必要10.已知若在定義域上恒成立,則的取值范圍是()A. B. C. D.11.胡夫金字塔是底面為正方形的錐體,四個側面都是相同的等腰三角形.研究發(fā)現(xiàn),該金字塔底面周長除以倍的塔高,恰好為祖沖之發(fā)現(xiàn)的密率.設胡夫金字塔的高為,假如對胡夫金字塔進行亮化,沿其側棱和底邊布設單條燈帶,則需要燈帶的總長度約為A. B.C. D.12.已知雙曲線的左,右焦點分別為,O為坐標原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為()A. B.3 C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.設,則______.14.復數(shù)(其中i為虛數(shù)單位)的共軛復數(shù)為________.15.不等式對于定義域內的任意恒成立,則的取值范圍為__________.16.設實數(shù)x,y滿足,則點表示的區(qū)域面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為了整頓道路交通秩序,某地考慮將對行人闖紅燈進行處罰.為了更好地了解市民的態(tài)度,在普通行人中隨機選取了200人進行調查,當不處罰時,有80人會闖紅燈,處罰時,得到如表數(shù)據(jù):處罰金額(單位:元)5101520會闖紅燈的人數(shù)50402010若用表中數(shù)據(jù)所得頻率代替概率.(1)當罰金定為10元時,行人闖紅燈的概率會比不進行處罰降低多少?(2)將選取的200人中會闖紅燈的市民分為兩類:類市民在罰金不超過10元時就會改正行為;類是其他市民.現(xiàn)對類與類市民按分層抽樣的方法抽取4人依次進行深度問卷,則前兩位均為類市民的概率是多少?18.(12分)設函數(shù),.(Ⅰ)討論的單調性;(Ⅱ)時,若,,求證:.19.(12分)已知與有兩個不同的交點,其橫坐標分別為().(1)求實數(shù)的取值范圍;(2)求證:.20.(12分)設函數(shù),是函數(shù)的導數(shù).(1)若,證明在區(qū)間上沒有零點;(2)在上恒成立,求的取值范圍.21.(12分)設函數(shù)其中(Ⅰ)若曲線在點處切線的傾斜角為,求的值;(Ⅱ)已知導函數(shù)在區(qū)間上存在零點,證明:當時,.22.(10分)設的內角、、的對邊長分別為、、.設為的面積,滿足.(1)求;(2)若,求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

求解的導函數(shù),研究其單調性,對任意不相等的正數(shù),構造新函數(shù),討論其單調性即可求解.【詳解】的定義域為,,當時,,故在單調遞減;不妨設,而,知在單調遞減,從而對任意、,恒有,即,,,令,則,原不等式等價于在單調遞減,即,從而,因為,所以實數(shù)a的取值范圍是故選:D.此題考查含參函數(shù)研究單調性問題,根據(jù)參數(shù)范圍化簡后構造新函數(shù)轉換為含參恒成立問題,屬于一般性題目.2.A【解析】

分別判斷命題和的真假性,然后根據(jù)含有邏輯聯(lián)結詞命題的真假性判斷出正確選項.【詳解】對于命題,由于,所以命題為真命題.對于命題,由于,由解得,且,所以是奇函數(shù),故為真命題.所以為真命題.、、都是假命題.故選:A本小題主要考查誘導公式,考查函數(shù)的奇偶性,考查含有邏輯聯(lián)結詞命題真假性的判斷,屬于基礎題.3.C【解析】

根據(jù)三視圖作出幾何體的直觀圖,結合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎題.4.A【解析】

根據(jù)題意,由拋物線的方程可得其焦點坐標,由此可得雙曲線的焦點坐標,由雙曲線的幾何性質可得,解可得,由離心率公式計算可得答案.【詳解】根據(jù)題意,拋物線的焦點為,則雙曲線的焦點也為,即,則有,解可得,雙曲線的離心率.故選:A.本題主要考查雙曲線、拋物線的標準方程,關鍵是求出拋物線焦點的坐標,意在考查學生對這些知識的理解掌握水平.5.B【解析】

根據(jù)線面平行、線面垂直和空間角的知識,判斷A選項的正確性.由線面平行有關知識判斷B選項的正確性.根據(jù)面面垂直的判定定理,判斷C選項的正確性.根據(jù)面面平行的性質判斷D選項的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B本小題主要考查空間線線、線面和面面有關命題真假性的判斷,屬于基礎題.6.A【解析】

本道題繪圖發(fā)現(xiàn)三角形周長最小時A,P位于同一水平線上,計算點P的坐標,計算斜率,即可.【詳解】結合題意,繪制圖像要計算三角形PAF周長最小值,即計算PA+PF最小值,結合拋物線性質可知,PF=PN,所以,故當點P運動到M點處,三角形周長最小,故此時M的坐標為,所以斜率為,故選A.本道題考查了拋物線的基本性質,難度中等.7.C【解析】

,將看成一個整體,結合的對稱性即可得到答案.【詳解】由已知,,令,得.故選:C.本題考查余弦型函數(shù)的對稱性的問題,在處理余弦型函數(shù)的性質時,一般采用整體法,結合三角函數(shù)的性質,是一道容易題.8.A【解析】

構造函數(shù),通過分析的單調性和對稱性,求得不等式的解集.【詳解】構造函數(shù),是單調遞增函數(shù),且向左移動一個單位得到,的定義域為,且,所以為奇函數(shù),圖像關于原點對稱,所以圖像關于對稱.不等式等價于,等價于,注意到,結合圖像關于對稱和單調遞增可知.所以不等式的解集是.故選:A本小題主要考查根據(jù)函數(shù)的單調性和對稱性解不等式,屬于中檔題.9.B【解析】

由線面關系可知,不能確定與平面的關系,若一定可得,即可求出答案.【詳解】,不能確定還是,,當時,存在,,由又可得,所以“”是“”的必要不充分條件,故選:B本題主要考查了必要不充分條件,線面垂直,線線垂直的判定,屬于中檔題.10.C【解析】

先解不等式,可得出,求出函數(shù)的值域,由題意可知,不等式在定義域上恒成立,可得出關于的不等式,即可解得實數(shù)的取值范圍.【詳解】,先解不等式.①當時,由,得,解得,此時;②當時,由,得.所以,不等式的解集為.下面來求函數(shù)的值域.當時,,則,此時;當時,,此時.綜上所述,函數(shù)的值域為,由于在定義域上恒成立,則不等式在定義域上恒成立,所以,,解得.因此,實數(shù)的取值范圍是.故選:C.本題考查利用函數(shù)不等式恒成立求參數(shù),同時也考查了分段函數(shù)基本性質的應用,考查分類討論思想的應用,屬于中等題.11.D【解析】

設胡夫金字塔的底面邊長為,由題可得,所以,該金字塔的側棱長為,所以需要燈帶的總長度約為,故選D.12.D【解析】

本道題結合雙曲線的性質以及余弦定理,建立關于a與c的等式,計算離心率,即可.【詳解】結合題意,繪圖,結合雙曲線性質可以得到PO=MO,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故對三角形運用余弦定理,得到,而結合,可得,,代入上式子中,得到,結合離心率滿足,即可得出,故選D.本道題考查了余弦定理以及雙曲線的性質,難度偏難.二、填空題:本題共4小題,每小題5分,共20分。13.121【解析】

在所給的等式中令,,令,可得2個等式,再根據(jù)所得的2個等式即可解得所求.【詳解】令,得,令,得,兩式相加,得,所以.故答案為:.本題主要考查二項式定理的應用,考查學生分析問題的能力,屬于基礎題,難度較易.14.【解析】

利用復數(shù)的乘法運算求出,再利用共軛復數(shù)的概念即可求解.【詳解】由,則.故答案為:本題考查了復數(shù)的四則運算以及共軛復數(shù)的概念,屬于基礎題.15.【解析】

根據(jù)題意,分離參數(shù),轉化為只對于內的任意恒成立,令,則只需在定義域內即可,利用放縮法,得出,化簡后得出,即可得出的取值范圍.【詳解】解:已知對于定義域內的任意恒成立,即對于內的任意恒成立,令,則只需在定義域內即可,,,當時取等號,由可知,,當時取等號,,當有解時,令,則,在上單調遞增,又,,使得,,則,所以的取值范圍為.故答案為:.本題考查利用導數(shù)研究函數(shù)單調性和最值,解決恒成立問題求參數(shù)值,涉及分離參數(shù)法和放縮法,考查轉化能力和計算能力.16.【解析】

先畫出滿足條件的平面區(qū)域,求出交點坐標,利用定積分即可求解.【詳解】畫出實數(shù)x,y滿足表示的平面區(qū)域,如圖(陰影部分):則陰影部分的面積,故答案為:本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)降低(2)【解析】

(1)計算出罰金定為10元時行人闖紅燈的概率,和不進行處罰時行人闖紅燈的概率,求解即可;(2)闖紅燈的市民有80人,其中類市民和類市民各有40人,根據(jù)分層抽樣法抽出4人依次排序,計算所求的概率值.【詳解】解:(1)當罰金定為10元時,行人闖紅燈的概率為;不進行處罰,行人闖紅燈的概率為;所以當罰金定為10元時,行人闖紅燈的概率會比不進行處罰降低;(2)由題可知,闖紅燈的市民有80人,類市民和類市民各有40人故分別從類市民和類市民各抽出兩人,4人依次排序記類市民中抽取的兩人對應的編號為,類市民中抽取的兩人編號為則4人依次排序分別為,,,,,,,,,,,,共有種前兩位均為類市民排序為,,有種,所以前兩位均為類市民的概率是.本題主要考查了計算古典概型的概率,屬于中檔題.18.(1)證明見解析;(2)證明見解析.【解析】

(1)首先對函數(shù)求導,再根據(jù)參數(shù)的取值,討論的正負,即可求出關于的單調性即可;(2)首先通過構造新函數(shù),討論新函數(shù)的單調性,根據(jù)新函數(shù)的單調性證明.【詳解】(1),令,則,令得,當時,則在單調遞減,當時,則在單調遞增,所以,當時,,即,則在上單調遞增,當時,,易知當時,,當時,,由零點存在性定理知,,不妨設,使得,當時,,即,當時,,即,當時,,即,所以在和上單調遞增,在單調遞減;(2)證明:構造函數(shù),,,,整理得,,(當時等號成立),所以在上單調遞增,則,所以在上單調遞增,,這里不妨設,欲證,即證由(1)知時,在上單調遞增,則需證,由已知有,只需證,即證,由在上單調遞增,且時,有,故成立,從而得證.本題主要考查了導數(shù)含參分類討論單調性,借助構造函數(shù)和單調性證明不等式,屬于難題.19.(1);(2)見解析【解析】

(1)利用導數(shù)研究的單調性,分析函數(shù)性質,數(shù)形結合,即得解;(2)構造函數(shù),可證得:,,分析直線,與從左到右交點的橫坐標,在,處的切線即得解.【詳解】(1)設函數(shù),,令,令故在單調遞減,在單調遞增,∴,∵時;;時.(2)①過點,的直線為,則令,,,.②過點,的直線為,則,在上單調遞增.③設直線,與從左到右交點的橫坐標依次為,,由圖知.④在,處的切線分別為,,同理可以證得,.記直線與兩切線和從左到右交點的橫坐標依次為,.本題考查了函數(shù)與導數(shù)綜合,考查了學生數(shù)形結合,綜合分析,轉化劃歸,邏輯推理,數(shù)學運算的能力,屬于較難題.20.(1)證明見解析(2)【解析】

(1)先利用導數(shù)的四則運算法則和導數(shù)公式求出,再由函數(shù)的導數(shù)可知,函數(shù)在上單調遞增,在上單調遞減,而,,可知在區(qū)間上恒成立,即在區(qū)間上沒有零點;(2)由題意可將轉化為,構造函數(shù),利用導數(shù)討論研究其在上的單調性,由,即可求出的取值范圍.【詳解】(1)若,則,,設,則,,,故函數(shù)是奇函數(shù).當時,,,這時,又函數(shù)是奇函數(shù),所以當時,.綜上,當時,函數(shù)單調遞增;當時,函數(shù)單調遞減.又,,故在區(qū)間上恒成立,所以在區(qū)間上沒有零點.(2),由,所以恒成立,若,則,設,.故當時,,又,所以當時,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論