




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年安徽宿州五校高三普通高中調(diào)研測試數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖所示,為了測量、兩座島嶼間的距離,小船從初始位置出發(fā),已知在的北偏西的方向上,在的北偏東的方向上,現(xiàn)在船往東開2百海里到達(dá)處,此時測得在的北偏西的方向上,再開回處,由向西開百海里到達(dá)處,測得在的北偏東的方向上,則、兩座島嶼間的距離為()A.3 B. C.4 D.2.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()3.已知為拋物線的焦點(diǎn),點(diǎn)在拋物線上,且,過點(diǎn)的動直線與拋物線交于兩點(diǎn),為坐標(biāo)原點(diǎn),拋物線的準(zhǔn)線與軸的交點(diǎn)為.給出下列四個命題:①在拋物線上滿足條件的點(diǎn)僅有一個;②若是拋物線準(zhǔn)線上一動點(diǎn),則的最小值為;③無論過點(diǎn)的直線在什么位置,總有;④若點(diǎn)在拋物線準(zhǔn)線上的射影為,則三點(diǎn)在同一條直線上.其中所有正確命題的個數(shù)為()A.1 B.2 C.3 D.44.已知函數(shù),,若對任意,總存在,使得成立,則實(shí)數(shù)的取值范圍為()A. B.C. D.5.已知若(1-ai)(3+2i)為純虛數(shù),則a的值為()A. B. C. D.6.已知函數(shù)(其中為自然對數(shù)的底數(shù))有兩個零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.7.已知向量,則是的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充要條件8.已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布,從中隨機(jī)取一件,其長度誤差落在區(qū)間(3,6)內(nèi)的概率為()(附:若隨機(jī)變量ξ服從正態(tài)分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%9.設(shè)(是虛數(shù)單位),則()A. B.1 C.2 D.10.用1,2,3,4,5組成不含重復(fù)數(shù)字的五位數(shù),要求數(shù)字4不出現(xiàn)在首位和末位,數(shù)字1,3,5中有且僅有兩個數(shù)字相鄰,則滿足條件的不同五位數(shù)的個數(shù)是()A.48 B.60 C.72 D.12011.已知平面向量,滿足,,且,則()A.3 B. C. D.512.若,,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為等差數(shù)列,為其前n項(xiàng)和,若,,則_______.14.已知不等式的解集不是空集,則實(shí)數(shù)的取值范圍是;若不等式對任意實(shí)數(shù)恒成立,則實(shí)數(shù)的取值范圍是___15.已知,分別是橢圓:()的左、右焦點(diǎn),過左焦點(diǎn)的直線與橢圓交于、兩點(diǎn),且,,則橢圓的離心率為__________.16.一個四面體的頂點(diǎn)在空間直角坐標(biāo)系中的坐標(biāo)分別是,,,,則該四面體的外接球的體積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(是自然對數(shù)的底數(shù),).(1)求函數(shù)的圖象在處的切線方程;(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;(3)若函數(shù)在區(qū)間上有兩個極值點(diǎn),且恒成立,求滿足條件的的最小值(極值點(diǎn)是指函數(shù)取極值時對應(yīng)的自變量的值).18.(12分)某超市計(jì)劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時,寫出Y的所有可能值,并估計(jì)Y大于零的概率.19.(12分)某地在每周六的晚上8點(diǎn)到10點(diǎn)半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時刻亮燈的概率均為,并且是否亮燈彼此相互獨(dú)立.現(xiàn)統(tǒng)計(jì)了其中100盞燈在一場燈光展中亮燈的時長(單位:),得到下面的頻數(shù)表:亮燈時長/頻數(shù)1020402010以樣本中100盞燈的平均亮燈時長作為一盞燈的亮燈時長.(1)試估計(jì)的值;(2)設(shè)表示這10000盞燈在某一時刻亮燈的數(shù)目.①求的數(shù)學(xué)期望和方差;②若隨機(jī)變量滿足,則認(rèn)為.假設(shè)當(dāng)時,燈光展處于最佳燈光亮度.試由此估計(jì),在一場燈光展中,處于最佳燈光亮度的時長(結(jié)果保留為整數(shù)).附:①某盞燈在某一時刻亮燈的概率等于亮燈時長與燈光展總時長的商;②若,則,,.20.(12分)已知在四棱錐中,平面,,在四邊形中,,,,為的中點(diǎn),連接,為的中點(diǎn),連接.(1)求證:.(2)求二面角的余弦值.21.(12分)如圖,已知四邊形的直角梯形,∥BC,,,,為線段的中點(diǎn),平面,,為線段上一點(diǎn)(不與端點(diǎn)重合).(1)若,(ⅰ)求證:PC∥平面;(ⅱ)求平面與平面所成的銳二面角的余弦值;(2)否存在實(shí)數(shù)滿足,使得直線與平面所成的角的正弦值為,若存在,確定的值,若不存在,請說明理由.22.(10分)在四邊形中,,;如圖,將沿邊折起,連結(jié),使,求證:(1)平面平面;(2)若為棱上一點(diǎn),且與平面所成角的正弦值為,求二面角的大小.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
先根據(jù)角度分析出的大小,然后根據(jù)角度關(guān)系得到的長度,再根據(jù)正弦定理計(jì)算出的長度,最后利用余弦定理求解出的長度即可.【詳解】由題意可知:,所以,,所以,所以,又因?yàn)?,所以,所?故選:B.本題考查解三角形中的角度問題,難度一般.理解方向角的概念以及活用正、余弦定理是解答問題的關(guān)鍵.2.D【解析】
由題意利用兩個向量坐標(biāo)形式的運(yùn)算法則,兩個向量平行、垂直的性質(zhì),得出結(jié)論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標(biāo)對應(yīng)不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標(biāo)對應(yīng)不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.本題主要考查兩個向量坐標(biāo)形式的運(yùn)算,兩個向量平行、垂直的性質(zhì),屬于基礎(chǔ)題.3.C【解析】
①:由拋物線的定義可知,從而可求的坐標(biāo);②:做關(guān)于準(zhǔn)線的對稱點(diǎn)為,通過分析可知當(dāng)三點(diǎn)共線時取最小值,由兩點(diǎn)間的距離公式,可求此時最小值;③:設(shè)出直線方程,聯(lián)立直線與拋物線方程,結(jié)合韋達(dá)定理,可知焦點(diǎn)坐標(biāo)的關(guān)系,進(jìn)而可求,從而可判斷出的關(guān)系;④:計(jì)算直線的斜率之差,可得兩直線斜率相等,進(jìn)而可判斷三點(diǎn)在同一條直線上.【詳解】解:對于①,設(shè),由拋物線的方程得,則,故,所以或,所以滿足條件的點(diǎn)有二個,故①不正確;對于②,不妨設(shè),則關(guān)于準(zhǔn)線的對稱點(diǎn)為,故,當(dāng)且僅當(dāng)三點(diǎn)共線時等號成立,故②正確;對于③,由題意知,,且的斜率不為0,則設(shè)方程為:,設(shè)與拋物線的交點(diǎn)坐標(biāo)為,聯(lián)立直線與拋物線的方程為,,整理得,則,所以,則.故的傾斜角互補(bǔ),所以,故③正確.對于④,由題意知,由③知,則,由,知,即三點(diǎn)在同一條直線上,故④正確.故選:C.本題考查了拋物線的定義,考查了直線與拋物線的位置關(guān)系,考查了拋物線的性質(zhì),考查了直線方程,考查了兩點(diǎn)的斜率公式.本題的難點(diǎn)在于第二個命題,結(jié)合初中的“飲馬問題”分析出何時取最小值.4.C【解析】
將函數(shù)解析式化簡,并求得,根據(jù)當(dāng)時可得的值域;由函數(shù)在上單調(diào)遞減可得的值域,結(jié)合存在性成立問題滿足的集合關(guān)系,即可求得的取值范圍.【詳解】依題意,則,當(dāng)時,,故函數(shù)在上單調(diào)遞增,當(dāng)時,;而函數(shù)在上單調(diào)遞減,故,則只需,故,解得,故實(shí)數(shù)的取值范圍為.故選:C.本題考查了導(dǎo)數(shù)在判斷函數(shù)單調(diào)性中的應(yīng)用,恒成立與存在性成立問題的綜合應(yīng)用,屬于中檔題.5.A【解析】
根據(jù)復(fù)數(shù)的乘法運(yùn)算法則化簡可得,根據(jù)純虛數(shù)的概念可得結(jié)果.【詳解】由題可知原式為,該復(fù)數(shù)為純虛數(shù),所以.故選:A本題考查復(fù)數(shù)的運(yùn)算和復(fù)數(shù)的分類,屬基礎(chǔ)題.6.B【解析】
求出導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,確定函數(shù)的最值,根據(jù)零點(diǎn)存在定理可確定參數(shù)范圍.【詳解】,當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,∴在上只有一個極大值也是最大值,顯然時,,時,,因此要使函數(shù)有兩個零點(diǎn),則,∴.故選:B.本題考查函數(shù)的零點(diǎn),考查用導(dǎo)數(shù)研究函數(shù)的最值,根據(jù)零點(diǎn)存在定理確定參數(shù)范圍.7.A【解析】
向量,,,則,即,或者-1,判斷出即可.【詳解】解:向量,,,則,即,或者-1,所以是或者的充分不必要條件,故選:A.本小題主要考查充分、必要條件的判斷,考查向量平行的坐標(biāo)表示,屬于基礎(chǔ)題.8.B【解析】試題分析:由題意故選B.考點(diǎn):正態(tài)分布9.A【解析】
先利用復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則求出,即可根據(jù)復(fù)數(shù)的模計(jì)算公式求出.【詳解】∵,∴.故選:A.本題主要考查復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則的應(yīng)用,以及復(fù)數(shù)的模計(jì)算公式的應(yīng)用,屬于容易題.10.A【解析】
對數(shù)字分類討論,結(jié)合數(shù)字中有且僅有兩個數(shù)字相鄰,利用分類計(jì)數(shù)原理,即可得到結(jié)論【詳解】數(shù)字出現(xiàn)在第位時,數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個數(shù)字出現(xiàn)在第位時,同理也有個數(shù)字出現(xiàn)在第位時,數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個故滿足條件的不同的五位數(shù)的個數(shù)是個故選本題主要考查了排列,組合及簡單計(jì)數(shù)問題,解題的關(guān)鍵是對數(shù)字分類討論,屬于基礎(chǔ)題。11.B【解析】
先求出,再利用求出,再求.【詳解】解:由,所以,,,故選:B考查向量的數(shù)量積及向量模的運(yùn)算,是基礎(chǔ)題.12.A【解析】
取,得到,取,則,計(jì)算得到答案.【詳解】取,得到;取,則.故.故選:.本題考查了二項(xiàng)式定理的應(yīng)用,取和是解題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】試題分析:因?yàn)槭堑炔顢?shù)列,所以,即,又,所以,所以.故答案為1.【考點(diǎn)】等差數(shù)列的基本性質(zhì)【名師點(diǎn)睛】在等差數(shù)列五個基本量,,,,中,已知其中三個量,可以根據(jù)已知條件,結(jié)合等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式列出關(guān)于基本量的方程(組)來求余下的兩個量,計(jì)算時須注意整體代換思想及方程思想的應(yīng)用.14.【解析】
利用絕對值的幾何意義,確定出的最小值,然后根據(jù)題意即可得到的取值范圍化簡不等式,求出的最大值,然后求出結(jié)果【詳解】的最小值為,則要使不等式的解集不是空集,則有化簡不等式有,即而當(dāng)時滿足題意,解得或所以答案為本題主要考查的是函數(shù)恒成立的問題和絕對值不等式,要注意到絕對值的幾何意義,數(shù)形結(jié)合來解答本題,注意去絕對值時的分類討論化簡15.【解析】
設(shè),則,,由知,,,作,垂足為C,則C為的中點(diǎn),在和中分別求出,進(jìn)而求出的關(guān)系式,即可求出橢圓的離心率.【詳解】如圖,設(shè),則,,由橢圓定義知,,因?yàn)?所以,,作,垂足為C,則C為的中點(diǎn),在中,因?yàn)?所以,在中,由余弦定理可得,,即,解得,所以橢圓的離心率為.故答案為:本題考查橢圓的離心率和直線與橢圓的位置關(guān)系;利用橢圓的定義,結(jié)合焦點(diǎn)三角形和余弦定理是求解本題的關(guān)鍵;屬于中檔題、??碱}型.16.【解析】
將四面體補(bǔ)充為長寬高分別為的長方體,體對角線即為外接球的直徑,從而得解.【詳解】采用補(bǔ)體法,由空間點(diǎn)坐標(biāo)可知,該四面體的四個頂點(diǎn)在一個長方體上,該長方體的長寬高分別為,長方體的外接球即為該四面體的外接球,外接球的直徑即為長方體的體對角線,所以球半徑為,體積為.本題主要考查了四面體外接球的常用求法:補(bǔ)體法,通過補(bǔ)體得到長方體的外接球從而得解,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2);(3).【解析】
(1)利用導(dǎo)數(shù)的幾何意義計(jì)算即可;(2)在上恒成立,只需,注意到;(3)在上有兩根,令,求導(dǎo)可得在上單調(diào)遞減,在上單調(diào)遞增,所以且,,,求出的范圍即可.【詳解】(1)因?yàn)?,所以,?dāng)時,,所以切線方程為,即.(2),.因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以,且恒成立,即,所以,即,又,故,所以實(shí)數(shù)的取值范圍是.(3).因?yàn)楹瘮?shù)在區(qū)間上有兩個極值點(diǎn),所以方程在上有兩不等實(shí)根,即.令,則,由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,解得且.又由,所以,且當(dāng)和時,單調(diào)遞增,當(dāng)時,單調(diào)遞減,是極值點(diǎn),此時令,則,所以在上單調(diào)遞減,所以.因?yàn)楹愠闪?,所?若,取,則,所以.令,則,.當(dāng)時,;當(dāng)時,.所以,所以在上單調(diào)遞增,所以,即存在使得,不合題意.滿足條件的的最小值為-4.本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值點(diǎn),不等式恒成立等知識,是一道難題.18.(1).(2).【解析】
(1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.(2)當(dāng)溫度大于等于25℃時,需求量為500,求出Y=900元;當(dāng)溫度在[20,25)℃時,需求量為300,求出Y=300元;當(dāng)溫度低于20℃時,需求量為200,求出Y=﹣100元,從而當(dāng)溫度大于等于20時,Y>0,由此能估計(jì)估計(jì)Y大于零的概率.【詳解】解:(1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間[20,25),需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,∴六月份這種酸奶一天的需求量不超過300瓶的概率p.(2)當(dāng)溫度大于等于25℃時,需求量為500,Y=450×2=900元,當(dāng)溫度在[20,25)℃時,需求量為300,Y=300×2﹣(450﹣300)×2=300元,當(dāng)溫度低于20℃時,需求量為200,Y=400﹣(450﹣200)×2=﹣100元,當(dāng)溫度大于等于20時,Y>0,由前三年六月份各天的最高氣溫?cái)?shù)據(jù),得當(dāng)溫度大于等于20℃的天數(shù)有:90﹣(2+16)=72,∴估計(jì)Y大于零的概率P.本題考查概率的求法,考查利潤的所有可能取值的求法,考查函數(shù)、古典概型等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題.19.(1)(2)①,,②72【解析】
(1)將每組數(shù)據(jù)的組中值乘以對應(yīng)的頻率,然后再將結(jié)果相加即可得到亮燈時長的平均數(shù),將此平均數(shù)除以(個小時),即可得到的估計(jì)值;(2)①利用二項(xiàng)分布的均值與方差的計(jì)算公式進(jìn)行求解;②先根據(jù)條件計(jì)算出的取值范圍,然后根據(jù)并結(jié)合正態(tài)分布概率的對稱性,求解出在滿足取值范圍下對應(yīng)的概率.【詳解】(1)平均時間為(分鐘)∴(2)①∵,∴,②∵,,∴∵,,∴∴即最佳時間長度為72分鐘.本題考查根據(jù)頻數(shù)分布表求解平均數(shù)、幾何概型(長度模型)、二項(xiàng)分布的均值與方差、正態(tài)分布的概率計(jì)算,屬于綜合性問題,難度一般.(1)如果,則;(2)計(jì)算正態(tài)分布中的概率,一定要活用正態(tài)分布圖象的對稱性對應(yīng)概率的對稱性.20.(1)見解析;(2)【解析】
(1)連接,證明,得到面,得到證明.(2)以,,所在直線分別為,,軸建立空間直角坐標(biāo)系,為平面的法向量,平面的一個法向量為,計(jì)算夾角得到答案.【詳解】(1)連接,在四邊形中,,平面,面,,,面,又面,,又在直角三角形中,,為的中點(diǎn),,,面,面,.(2)以,,所在直線分別為,,軸建立空間直角坐標(biāo)系,,,,,,,設(shè)為平面的法向量,,,,,令,則,,,同理可得平面的一個法向量為.設(shè)向量與的所成的角為,,由圖形知,二面角為銳二面角,所以余弦值為.本題考查了線線垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.21.(1)(?。┳C明見解析(ⅱ)(2)存在,【解析】
(1)(i)連接交于點(diǎn),連接,,依題意易證四邊形為平行四邊形,從而有,,由此能證明PC∥平面(ii)推導(dǎo)出,以為原點(diǎn)建立空間直角坐標(biāo)系,利用向
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《A day in the park》作業(yè)設(shè)計(jì)方案
- 個人消防責(zé)任書
- 協(xié)議合同和加盟合同范本
- 醫(yī)療器材加工合同范本
- 中藥炮制工中級習(xí)題庫+參考答案
- 生物制藥復(fù)習(xí)題+答案
- 農(nóng)藝工中級模考試題(含答案)
- 接觸網(wǎng)中級工測試題
- 七律長征 教案教學(xué)設(shè)計(jì)
- 危廢傭金合同范本
- 部編人教版四年級下冊道德與法治 第6課 有多少浪費(fèi)本可避免 教學(xué)課件PPT
- 精神衛(wèi)生醫(yī)聯(lián)體服務(wù)平臺
- 2023年北京春季流感中醫(yī)藥防治方案(試行)、春季流感治療相關(guān)中成藥推薦目錄
- 重慶市渝北區(qū)大灣鎮(zhèn)招錄村綜合服務(wù)專干模擬檢測試卷【共500題含答案解析】
- GB/T 5915-1993仔豬、生長肥育豬配合飼料
- 壓花藝術(shù)課件
- DB32T4220-2022消防設(shè)施物聯(lián)網(wǎng)系統(tǒng)技術(shù)規(guī)范-(高清版)
- (新版)老年人健康管理理論考試題庫(含答案)
- 感應(yīng)加熱操作規(guī)程
- 煤氣設(shè)施安全檢查表(修訂)
- XX省血液調(diào)配管理辦法
評論
0/150
提交評論