2024-2025學(xué)年廣東省潮州市名校高三下學(xué)期統(tǒng)練(一)數(shù)學(xué)試題含解析_第1頁(yè)
2024-2025學(xué)年廣東省潮州市名校高三下學(xué)期統(tǒng)練(一)數(shù)學(xué)試題含解析_第2頁(yè)
2024-2025學(xué)年廣東省潮州市名校高三下學(xué)期統(tǒng)練(一)數(shù)學(xué)試題含解析_第3頁(yè)
2024-2025學(xué)年廣東省潮州市名校高三下學(xué)期統(tǒng)練(一)數(shù)學(xué)試題含解析_第4頁(yè)
2024-2025學(xué)年廣東省潮州市名校高三下學(xué)期統(tǒng)練(一)數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024-2025學(xué)年廣東省潮州市名校高三下學(xué)期統(tǒng)練(一)數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知、是雙曲線的左右焦點(diǎn),過(guò)點(diǎn)與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點(diǎn),若點(diǎn)在以線段為直徑的圓外,則雙曲線離心率的取值范圍是()A. B. C. D.2.已知函數(shù),則函數(shù)的圖象大致為()A. B.C. D.3.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件4.如圖是來(lái)自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個(gè)半圓構(gòu)成,三個(gè)半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C. D.5.蒙特卡洛算法是以概率和統(tǒng)計(jì)的理論、方法為基礎(chǔ)的一種計(jì)算方法,將所求解的問(wèn)題同一定的概率模型相聯(lián)系;用均勻投點(diǎn)實(shí)現(xiàn)統(tǒng)計(jì)模擬和抽樣,以獲得問(wèn)題的近似解,故又稱統(tǒng)計(jì)模擬法或統(tǒng)計(jì)實(shí)驗(yàn)法.現(xiàn)向一邊長(zhǎng)為的正方形模型內(nèi)均勻投點(diǎn),落入陰影部分的概率為,則圓周率()A. B.C. D.6.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為坐標(biāo)原點(diǎn)),則k的值為()A. B. C.或- D.和-7.某幾何體的三視圖如圖所示,若圖中小正方形的邊長(zhǎng)均為1,則該幾何體的體積是A. B. C. D.8.已知定義在上的函數(shù)的周期為4,當(dāng)時(shí),,則()A. B. C. D.9.如圖在直角坐標(biāo)系中,過(guò)原點(diǎn)作曲線的切線,切點(diǎn)為,過(guò)點(diǎn)分別作、軸的垂線,垂足分別為、,在矩形中隨機(jī)選取一點(diǎn),則它在陰影部分的概率為()A. B. C. D.10.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.411.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.12.設(shè),則關(guān)于的方程所表示的曲線是()A.長(zhǎng)軸在軸上的橢圓 B.長(zhǎng)軸在軸上的橢圓C.實(shí)軸在軸上的雙曲線 D.實(shí)軸在軸上的雙曲線二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),且,,使得,則實(shí)數(shù)m的取值范圍是______.14.一個(gè)四面體的頂點(diǎn)在空間直角坐標(biāo)系中的坐標(biāo)分別是,,,,則該四面體的外接球的體積為_(kāi)_________.15.已知是函數(shù)的極大值點(diǎn),則的取值范圍是____________.16.在正方體中,為棱的中點(diǎn),是棱上的點(diǎn),且,則異面直線與所成角的余弦值為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),.(1)若不等式對(duì)恒成立,求的最小值;(2)證明:.(3)設(shè)方程的實(shí)根為.令若存在,,,使得,證明:.18.(12分)已知橢圓C:()的左、右焦點(diǎn)分別為,,離心率為,且過(guò)點(diǎn).(1)求橢圓C的方程;(2)過(guò)左焦點(diǎn)的直線l與橢圓C交于不同的A,B兩點(diǎn),若,求直線l的斜率k.19.(12分)已知橢圓:(),點(diǎn)是的左頂點(diǎn),點(diǎn)為上一點(diǎn),離心率.(1)求橢圓的方程;(2)設(shè)過(guò)點(diǎn)的直線與的另一個(gè)交點(diǎn)為(異于點(diǎn)),是否存在直線,使得以為直徑的圓經(jīng)過(guò)點(diǎn),若存在,求出直線的方程;若不存在,說(shuō)明理由.20.(12分)在銳角中,分別是角的對(duì)邊,,,且.(1)求角的大?。唬?)求函數(shù)的值域.21.(12分)已知函數(shù)(1)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;(2)求證:22.(10分)已知橢圓的右焦點(diǎn)為,過(guò)作軸的垂線交橢圓于點(diǎn)(點(diǎn)在軸上方),斜率為的直線交橢圓于兩點(diǎn),過(guò)點(diǎn)作直線交橢圓于點(diǎn),且,直線交軸于點(diǎn).(1)設(shè)橢圓的離心率為,當(dāng)點(diǎn)為橢圓的右頂點(diǎn)時(shí),的坐標(biāo)為,求的值.(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請(qǐng)說(shuō)明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】雙曲線﹣=1的漸近線方程為y=x,不妨設(shè)過(guò)點(diǎn)F1與雙曲線的一條漸過(guò)線平行的直線方程為y=(x﹣c),與y=﹣x聯(lián)立,可得交點(diǎn)M(,﹣),∵點(diǎn)M在以線段F1F1為直徑的圓外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.則e=>1.∴雙曲線離心率的取值范圍是(1,+∞).故選:A.點(diǎn)睛:解決橢圓和雙曲線的離心率的求值及范圍問(wèn)題其關(guān)鍵就是確立一個(gè)關(guān)于a,b,c的方程或不等式,再根據(jù)a,b,c的關(guān)系消掉b得到a,c的關(guān)系式,建立關(guān)于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.2.A【解析】

用排除法,通過(guò)函數(shù)圖像的性質(zhì)逐個(gè)選項(xiàng)進(jìn)行判斷,找出不符合函數(shù)解析式的圖像,最后剩下即為此函數(shù)的圖像.【詳解】設(shè),由于,排除B選項(xiàng);由于,所以,排除C選項(xiàng);由于當(dāng)時(shí),,排除D選項(xiàng).故A選項(xiàng)正確.故選:A本題考查了函數(shù)圖像的性質(zhì),屬于中檔題.3.A【解析】

利用兩條直線互相平行的條件進(jìn)行判定【詳解】當(dāng)時(shí),直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選本題主要考查了兩直線平行的條件和性質(zhì),充分條件,必要條件的定義和判斷方法,屬于基礎(chǔ)題.4.D【解析】

由半圓面積之比,可求出兩個(gè)直角邊的長(zhǎng)度之比,從而可知,結(jié)合同角三角函數(shù)的基本關(guān)系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知,以為直徑的半圓面積,以為直徑的半圓面積,則,即.由,得,所以.故選:D.本題考查了同角三角函數(shù)的基本關(guān)系,考查了二倍角公式.本題的關(guān)鍵是由面積比求出角的正切值.5.A【解析】

計(jì)算出黑色部分的面積與總面積的比,即可得解.【詳解】由,∴.故選:A本題考查了面積型幾何概型的概率的計(jì)算,屬于基礎(chǔ)題.6.C【解析】

直線過(guò)定點(diǎn),直線y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為原點(diǎn)),可以發(fā)現(xiàn)∠QOx的大小,求得結(jié)果.【詳解】如圖,直線過(guò)定點(diǎn)(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對(duì)稱性可知k=±.故選C.本題考查過(guò)定點(diǎn)的直線系問(wèn)題,以及直線和圓的位置關(guān)系,是基礎(chǔ)題.7.B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點(diǎn)睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.8.A【解析】

因?yàn)榻o出的解析式只適用于,所以利用周期性,將轉(zhuǎn)化為,再與一起代入解析式,利用對(duì)數(shù)恒等式和對(duì)數(shù)的運(yùn)算性質(zhì),即可求得結(jié)果.【詳解】定義在上的函數(shù)的周期為4,當(dāng)時(shí),,,,.故選:A.本題考查了利用函數(shù)的周期性求函數(shù)值,對(duì)數(shù)的運(yùn)算性質(zhì),屬于中檔題.9.A【解析】

設(shè)所求切線的方程為,聯(lián)立,消去得出關(guān)于的方程,可得出,求出的值,進(jìn)而求得切點(diǎn)的坐標(biāo),利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設(shè)所求切線的方程為,則,聯(lián)立,消去得①,由,解得,方程①為,解得,則點(diǎn),所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.本題考查定積分的計(jì)算以及幾何概型,同時(shí)也涉及了二次函數(shù)的切線方程的求解,考查計(jì)算能力,屬于中等題.10.A【解析】

由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】解:設(shè)雙曲線的半個(gè)焦距為,由題意又,則,,,所以離心率,故選:A.本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),屬于基礎(chǔ)題11.D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.12.C【解析】

根據(jù)條件,方程.即,結(jié)合雙曲線的標(biāo)準(zhǔn)方程的特征判斷曲線的類型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,

方程,即,表示實(shí)軸在y軸上的雙曲線,

故選C.本題考查雙曲線的標(biāo)準(zhǔn)方程的特征,依據(jù)條件把已知的曲線方程化為是關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)條件轉(zhuǎn)化為函數(shù)在上的值域是函數(shù)在上的值域的子集;分別求值域即可得到結(jié)論.【詳解】解:依題意,,即函數(shù)在上的值域是函數(shù)在上的值域的子集.因?yàn)樵谏系闹涤驗(yàn)椋ǎ┗颍ǎ?,在上的值域?yàn)?,故或,解得故答案為?本題考查了分段函數(shù)的值域求參數(shù)的取值范圍,屬于中檔題.14.【解析】

將四面體補(bǔ)充為長(zhǎng)寬高分別為的長(zhǎng)方體,體對(duì)角線即為外接球的直徑,從而得解.【詳解】采用補(bǔ)體法,由空間點(diǎn)坐標(biāo)可知,該四面體的四個(gè)頂點(diǎn)在一個(gè)長(zhǎng)方體上,該長(zhǎng)方體的長(zhǎng)寬高分別為,長(zhǎng)方體的外接球即為該四面體的外接球,外接球的直徑即為長(zhǎng)方體的體對(duì)角線,所以球半徑為,體積為.本題主要考查了四面體外接球的常用求法:補(bǔ)體法,通過(guò)補(bǔ)體得到長(zhǎng)方體的外接球從而得解,屬于基礎(chǔ)題.15.【解析】

方法一:令,則,,當(dāng),時(shí),,單調(diào)遞減,∴時(shí),,,且,∴在上單調(diào)遞增,時(shí),,,且,∴在上單調(diào)遞減,∴是函數(shù)的極大值點(diǎn),∴滿足題意;當(dāng)時(shí),存在使得,即,又在上單調(diào)遞減,∴時(shí),,,所以,這與是函數(shù)的極大值點(diǎn)矛盾.綜上,.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點(diǎn),由知須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時(shí),與相切于原點(diǎn),所以根據(jù)與的圖象關(guān)系,可得.16.【解析】

根據(jù)題意畫出幾何題,建立空間直角坐標(biāo)系,寫個(gè)各個(gè)點(diǎn)的坐標(biāo),并求得.由空間向量的夾角求法即可求得異面直線與所成角的余弦值.【詳解】根據(jù)題意畫出幾何圖形,以為原點(diǎn)建立空間直角坐標(biāo)系:設(shè)正方體的棱長(zhǎng)為1,則所以所以,所以異面直線與所成角的余弦值為,故答案為:.本題考查了異面直線夾角的求法,利用空間向量求異面直線夾角,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)證明見(jiàn)解析(3)證明見(jiàn)解析【解析】

(1)由題意可得,,令,利用導(dǎo)數(shù)得在上單調(diào)遞減,進(jìn)而可得結(jié)論;(2)不等式轉(zhuǎn)化為,令,,利用導(dǎo)數(shù)得單調(diào)性即可得到答案;(3)由題意可得,進(jìn)而可將不等式轉(zhuǎn)化為,再利用單調(diào)性可得,記,,再利用導(dǎo)數(shù)研究單調(diào)性可得在上單調(diào)遞增,即,即,即可得到結(jié)論.【詳解】(1),即,化簡(jiǎn)可得.令,,因?yàn)?,所以?所以,在上單調(diào)遞減,.所以的最小值為.(2)要證,即.兩邊同除以可得.設(shè),則.在上,,所以在上單調(diào)遞減.在上,,所以在上單調(diào)遞增,所以.設(shè),因?yàn)樵谏鲜菧p函數(shù),所以.所以,即.(3)證明:方程在區(qū)間上的實(shí)根為,即,要證,由可知,即要證.當(dāng)時(shí),,,因而在上單調(diào)遞增.當(dāng)時(shí),,,因而在上單調(diào)遞減.因?yàn)?,所以,要證.即要證.記,.因?yàn)椋?,則..設(shè),,當(dāng)時(shí),.時(shí),,故.且,故,因?yàn)?,所?因此,即在上單調(diào)遞增.所以,即.故得證.本題考查函數(shù)的單調(diào)性、最值、函數(shù)恒成立問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,轉(zhuǎn)化思想,構(gòu)造函數(shù)研究單調(diào)性,屬于難題.18.(1)(2)直線l的斜率為或【解析】

(1)根據(jù)已知列出方程組即可解得橢圓方程;(2)設(shè)直線方程,與橢圓方程聯(lián)立,轉(zhuǎn)化為,借助向量的數(shù)量積的坐標(biāo)表示,及韋達(dá)定理即可求得結(jié)果.【詳解】(1)由題意得解得故橢圓C的方程為.(2)直線l的方程為,設(shè),,則由方程組消去y得,,所以,,由,得,所以,又所以,即所以,因此,直線l的斜率為或.本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線和橢圓的位置關(guān)系,考查學(xué)生的計(jì)算求解能力,難度一般.19.(1);(2)存在,【解析】

(1)把點(diǎn)代入橢圓C的方程,再結(jié)合離心率,可得a,b,c的關(guān)系,可得橢圓的方程;(2)設(shè)出直線的方程,代入橢圓,運(yùn)用韋達(dá)定理可求得點(diǎn)的坐標(biāo),再由,可求得直線的方程,要注意檢驗(yàn)直線是否和橢圓有兩個(gè)交點(diǎn).【詳解】(1)由題可得∴,所以橢圓的方程(2)由題知,設(shè),直線的斜率存在設(shè)為,則與橢圓聯(lián)立得,,∴,,∴若以為直徑的圓經(jīng)過(guò)點(diǎn),則,∴,化簡(jiǎn)得,∴,解得或因?yàn)榕c不重合,所以舍.所以直線的方程為.本題考查橢圓的簡(jiǎn)單性質(zhì),考查直線與橢圓位置關(guān)系的應(yīng)用,考查了向量的數(shù)量積的運(yùn)用,屬于中檔題.20.(1);(2)【解析】

(1)由向量平行的坐標(biāo)表示、正弦定理邊化角和兩角和差正弦公式可化簡(jiǎn)求得,進(jìn)而得到;(2)利用兩角和差余弦公式、二倍角和輔助角公式化簡(jiǎn)函數(shù)為,根據(jù)的范圍可確定的范圍,結(jié)合正弦函數(shù)圖象可確定所求函數(shù)的值域.【詳解】(1),,由正弦定理得:,即,,,,又,.(2)在銳角中,,..,,,,函數(shù)的值域?yàn)椋绢}考查三角恒等變換、解三角形和三角函數(shù)性質(zhì)的綜合應(yīng)用問(wèn)題;涉及到共線向量的坐標(biāo)表示、利用三角恒等變換公式化簡(jiǎn)求值、正弦定理邊化角的應(yīng)用、正弦型函數(shù)值域的求解等知識(shí).21.(1);(2)見(jiàn)解析.【解析】

(1)將問(wèn)題轉(zhuǎn)化為對(duì)任意恒成立,換元構(gòu)造新函數(shù)即可得解;(2)結(jié)合(1)可得,令,求導(dǎo)后證明其導(dǎo)函數(shù)單調(diào)遞增,結(jié)合,即可得函數(shù)的單調(diào)區(qū)間和最小值,即可得證.【詳解】(1)對(duì)任意恒成立等價(jià)于對(duì)任意恒成立,令,,則,當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;有最大值,.(2)證明:由(1)知,當(dāng)時(shí),即,,,令,則,令,則,在上是增函數(shù),又,當(dāng)時(shí),;當(dāng)時(shí),,在上是減函數(shù),在上是增函數(shù),,即,.本題考查了利用導(dǎo)數(shù)解決恒成立問(wèn)題,考查了利用導(dǎo)數(shù)證明不等式,考查了計(jì)算能力和轉(zhuǎn)化化歸思想,屬于中檔題.22.(1);(2)不存在,理由見(jiàn)解析【解析

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論