2022年上海市寶山區(qū)海濱中學(xué)高三最后一模數(shù)學(xué)試題含解析_第1頁(yè)
2022年上海市寶山區(qū)海濱中學(xué)高三最后一模數(shù)學(xué)試題含解析_第2頁(yè)
2022年上海市寶山區(qū)海濱中學(xué)高三最后一模數(shù)學(xué)試題含解析_第3頁(yè)
2022年上海市寶山區(qū)海濱中學(xué)高三最后一模數(shù)學(xué)試題含解析_第4頁(yè)
2022年上海市寶山區(qū)海濱中學(xué)高三最后一模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知點(diǎn)是雙曲線上一點(diǎn),若點(diǎn)到雙曲線的兩條漸近線的距離之積為,則雙曲線的離心率為()A. B. C. D.22.函數(shù)的大致圖象是A. B. C. D.3.如圖,圓的半徑為,,是圓上的定點(diǎn),,是圓上的動(dòng)點(diǎn),點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,角的始邊為射線,終邊為射線,將表示為的函數(shù),則在上的圖像大致為()A. B. C. D.4.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則z的虛部為()A. B. C.1 D.5.若的展開(kāi)式中的系數(shù)之和為,則實(shí)數(shù)的值為()A. B. C. D.16.為研究語(yǔ)文成績(jī)和英語(yǔ)成績(jī)之間是否具有線性相關(guān)關(guān)系,統(tǒng)計(jì)兩科成績(jī)得到如圖所示的散點(diǎn)圖(兩坐標(biāo)軸單位長(zhǎng)度相同),用回歸直線近似地刻畫其相關(guān)關(guān)系,根據(jù)圖形,以下結(jié)論最有可能成立的是()A.線性相關(guān)關(guān)系較強(qiáng),b的值為1.25B.線性相關(guān)關(guān)系較強(qiáng),b的值為0.83C.線性相關(guān)關(guān)系較強(qiáng),b的值為-0.87D.線性相關(guān)關(guān)系太弱,無(wú)研究?jī)r(jià)值7.某個(gè)小區(qū)住戶共200戶,為調(diào)查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進(jìn)行調(diào)查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內(nèi)用水量超過(guò)15m3的住戶的戶數(shù)為()A.10 B.50 C.60 D.1408.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.9.已知全集,集合,,則陰影部分表示的集合是()A. B. C. D.10.已知為銳角,且,則等于()A. B. C. D.11.已知雙曲線的右焦點(diǎn)為F,過(guò)右頂點(diǎn)A且與x軸垂直的直線交雙曲線的一條漸近線于M點(diǎn),MF的中點(diǎn)恰好在雙曲線C上,則C的離心率為()A. B. C. D.12.在平面直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn),漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,平面BCC1B1⊥平面ABC,ABC=120,四邊形BCC1B1為正方形,且AB=BC=2,則異面直線BC1與AC所成角的余弦值為_(kāi)____.14.的展開(kāi)式中,的系數(shù)為_(kāi)______(用數(shù)字作答).15.我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載“今有人共買物,人出八,盈三;人出七,不足四.問(wèn)人數(shù)、物價(jià)各幾何?”設(shè)人數(shù)、物價(jià)分別為、,滿足,則_____,_____.16.在中,點(diǎn)在邊上,且,設(shè),,則________(用,表示)三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護(hù)意識(shí),高二年級(jí)準(zhǔn)備成立一個(gè)環(huán)境保護(hù)興趣小組.該年級(jí)理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護(hù)興趣小組,再?gòu)倪@10人的興趣小組中抽出4人參加學(xué)校的環(huán)保知識(shí)競(jìng)賽.(1)設(shè)事件為“選出的這4個(gè)人中要求有兩個(gè)男生兩個(gè)女生,而且這兩個(gè)男生必須文、理科生都有”,求事件發(fā)生的概率;(2)用表示抽取的4人中文科女生的人數(shù),求的分布列和數(shù)學(xué)期望.18.(12分)的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知.(1)求B;(2)若,求的面積的最大值.19.(12分)如圖,在四棱錐中,是等邊三角形,,,.(1)若,求證:平面;(2)若,求二面角的正弦值.20.(12分)為了實(shí)現(xiàn)中華民族偉大復(fù)興之夢(mèng),把我國(guó)建設(shè)成為富強(qiáng)民主文明和諧美麗的社會(huì)主義現(xiàn)代化強(qiáng)國(guó),黨和國(guó)家為勞動(dòng)者開(kāi)拓了寬廣的創(chuàng)造性勞動(dòng)的舞臺(tái).借此“東風(fēng)”,某大型現(xiàn)代化農(nóng)場(chǎng)在種植某種大棚有機(jī)無(wú)公害的蔬菜時(shí),為創(chuàng)造更大價(jià)值,提高畝產(chǎn)量,積極開(kāi)展技術(shù)創(chuàng)新活動(dòng).該農(nóng)場(chǎng)采用了延長(zhǎng)光照時(shí)間和降低夜間溫度兩種不同方案.為比較兩種方案下產(chǎn)量的區(qū)別,該農(nóng)場(chǎng)選取了40間大棚(每間一畝),分成兩組,每組20間進(jìn)行試點(diǎn).第一組采用延長(zhǎng)光照時(shí)間的方案,第二組采用降低夜間溫度的方案.同時(shí)種植該蔬菜一季,得到各間大棚產(chǎn)量數(shù)據(jù)信息如下圖:(1)如果你是該農(nóng)場(chǎng)的負(fù)責(zé)人,在只考慮畝產(chǎn)量的情況下,請(qǐng)根據(jù)圖中的數(shù)據(jù)信息,對(duì)于下一季大棚蔬菜的種植,說(shuō)出你的決策方案并說(shuō)明理由;(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長(zhǎng)光照時(shí)間的方案,光照設(shè)備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設(shè)備的每年成本為0.2千元/畝.已知該農(nóng)場(chǎng)共有大棚100間(每間1畝),農(nóng)場(chǎng)種植的該蔬菜每年產(chǎn)出兩次,且該蔬菜市場(chǎng)的收購(gòu)均價(jià)為1千元/千斤.根據(jù)題中所給數(shù)據(jù),用樣本估計(jì)總體,請(qǐng)計(jì)算在兩種不同的方案下,種植該蔬菜一年的平均利潤(rùn);(3)農(nóng)場(chǎng)根據(jù)以往該蔬菜的種植經(jīng)驗(yàn),認(rèn)為一間大棚畝產(chǎn)量超過(guò)5.25千斤為增產(chǎn)明顯.在進(jìn)行夜間降溫試點(diǎn)的20間大棚中隨機(jī)抽取3間,記增產(chǎn)明顯的大棚間數(shù)為,求的分布列及期望.21.(12分)已知函數(shù).(1)求不等式的解集;(2)設(shè)的最小值為,正數(shù),滿足,證明:.22.(10分)已知函數(shù).(1)討論的單調(diào)性;(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實(shí)數(shù),使得,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

設(shè)點(diǎn)的坐標(biāo)為,代入橢圓方程可得,然后分別求出點(diǎn)到兩條漸近線的距離,由距離之積為,并結(jié)合,可得到的齊次方程,進(jìn)而可求出離心率的值.【詳解】設(shè)點(diǎn)的坐標(biāo)為,有,得.雙曲線的兩條漸近線方程為和,則點(diǎn)到雙曲線的兩條漸近線的距離之積為,所以,則,即,故,即,所以.故選:A.【點(diǎn)睛】本題考查雙曲線的離心率,構(gòu)造的齊次方程是解決本題的關(guān)鍵,屬于中檔題.2.A【解析】

利用函數(shù)的對(duì)稱性及函數(shù)值的符號(hào)即可作出判斷.【詳解】由題意可知函數(shù)為奇函數(shù),可排除B選項(xiàng);當(dāng)時(shí),,可排除D選項(xiàng);當(dāng)時(shí),,當(dāng)時(shí),,即,可排除C選項(xiàng),故選:A【點(diǎn)睛】本題考查了函數(shù)圖象的判斷,函數(shù)對(duì)稱性的應(yīng)用,屬于中檔題.3.B【解析】

根據(jù)圖象分析變化過(guò)程中在關(guān)鍵位置及部分區(qū)域,即可排除錯(cuò)誤選項(xiàng),得到函數(shù)圖象,即可求解.【詳解】由題意,當(dāng)時(shí),P與A重合,則與B重合,所以,故排除C,D選項(xiàng);當(dāng)時(shí),,由圖象可知選B.故選:B【點(diǎn)睛】本題主要考查三角函數(shù)的圖像與性質(zhì),正確表示函數(shù)的表達(dá)式是解題的關(guān)鍵,屬于中檔題.4.D【解析】

根據(jù)復(fù)數(shù)z滿足,利用復(fù)數(shù)的除法求得,再根據(jù)復(fù)數(shù)的概念求解.【詳解】因?yàn)閺?fù)數(shù)z滿足,所以,所以z的虛部為.故選:D.【點(diǎn)睛】本題主要考查復(fù)數(shù)的概念及運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.5.B【解析】

由,進(jìn)而分別求出展開(kāi)式中的系數(shù)及展開(kāi)式中的系數(shù),令二者之和等于,可求出實(shí)數(shù)的值.【詳解】由,則展開(kāi)式中的系數(shù)為,展開(kāi)式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.6.B【解析】

根據(jù)散點(diǎn)圖呈現(xiàn)的特點(diǎn)可以看出,二者具有相關(guān)關(guān)系,且斜率小于1.【詳解】散點(diǎn)圖里變量的對(duì)應(yīng)點(diǎn)分布在一條直線附近,且比較密集,故可判斷語(yǔ)文成績(jī)和英語(yǔ)成績(jī)之間具有較強(qiáng)的線性相關(guān)關(guān)系,且直線斜率小于1,故選B.【點(diǎn)睛】本題主要考查散點(diǎn)圖的理解,側(cè)重考查讀圖識(shí)圖能力和邏輯推理的核心素養(yǎng).7.C【解析】從頻率分布直方圖可知,用水量超過(guò)15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過(guò)15立方米所以小區(qū)內(nèi)用水量超過(guò)15立方米的住戶戶數(shù)為,故選C8.D【解析】

直接利用復(fù)數(shù)的模的求法的運(yùn)算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項(xiàng):【點(diǎn)睛】本題考查復(fù)數(shù)的模的運(yùn)算法則的應(yīng)用,復(fù)數(shù)的模的求法,考查計(jì)算能力.9.D【解析】

先求出集合N的補(bǔ)集,再求出集合M與的交集,即為所求陰影部分表示的集合.【詳解】由,,可得或,又所以.故選:D.【點(diǎn)睛】本題考查了韋恩圖表示集合,集合的交集和補(bǔ)集的運(yùn)算,屬于基礎(chǔ)題.10.C【解析】

由可得,再利用計(jì)算即可.【詳解】因?yàn)椋?,所以,所?故選:C.【點(diǎn)睛】本題考查二倍角公式的應(yīng)用,考查學(xué)生對(duì)三角函數(shù)式化簡(jiǎn)求值公式的靈活運(yùn)用的能力,屬于基礎(chǔ)題.11.A【解析】

設(shè),則MF的中點(diǎn)坐標(biāo)為,代入雙曲線的方程可得的關(guān)系,再轉(zhuǎn)化成關(guān)于的齊次方程,求出的值,即可得答案.【詳解】雙曲線的右頂點(diǎn)為,右焦點(diǎn)為,M所在直線為,不妨設(shè),∴MF的中點(diǎn)坐標(biāo)為.代入方程可得,∴,∴,∴(負(fù)值舍去).故選:A.【點(diǎn)睛】本題考查雙曲線的離心率,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意構(gòu)造的齊次方程.12.B【解析】

根據(jù)所求雙曲線的漸近線方程為,可設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為k.再把點(diǎn)代入,求得k的值,可得要求的雙曲線的方程.【詳解】∵雙曲線的漸近線方程為設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為k.又在雙曲線上,則k=16-2=14,即雙曲線的方程為∴雙曲線的標(biāo)準(zhǔn)方程為故選:B【點(diǎn)睛】本題主要考查用待定系數(shù)法求雙曲線的方程,雙曲線的定義和標(biāo)準(zhǔn)方程,以及雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

將平移到和相交的位置,解三角形求得線線角的余弦值.【詳解】過(guò)作,過(guò)作,畫出圖像如下圖所示,由于四邊形是平行四邊形,故,所以是所求線線角或其補(bǔ)角.在三角形中,,故.【點(diǎn)睛】本小題主要考查空間兩條直線所成角的余弦值的計(jì)算,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.14.60【解析】

根據(jù)二項(xiàng)式定理展開(kāi)式通項(xiàng),即可求得的系數(shù).【詳解】因?yàn)?,所以,則所求項(xiàng)的系數(shù)為.故答案為:60【點(diǎn)睛】本題考查了二項(xiàng)展開(kāi)式通項(xiàng)公式的應(yīng)用,指定項(xiàng)系數(shù)的求法,屬于基礎(chǔ)題.15.【解析】

利用已知條件,通過(guò)求解方程組即可得到結(jié)果.【詳解】設(shè)人數(shù)、物價(jià)分別為、,滿足,解得,.故答案為:;.【點(diǎn)睛】本題考查函數(shù)與方程的應(yīng)用,方程組的求解,考查計(jì)算能力,屬于基礎(chǔ)題.16.【解析】

結(jié)合圖形及向量的線性運(yùn)算將轉(zhuǎn)化為用向量表示,即可得到結(jié)果.【詳解】在中,因?yàn)?,所以,又因?yàn)椋裕蚀鸢笧椋骸军c(diǎn)睛】本題主要考查三角形中向量的線性運(yùn)算,關(guān)鍵是利用已知向量為基底,將未知向量通過(guò)幾何條件向基底轉(zhuǎn)化.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2)見(jiàn)解析【解析】

(1)按分層抽樣得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超幾何分布求解即可【詳解】(1)因?yàn)閷W(xué)生總數(shù)為1000人,該年級(jí)分文、理科按男女用分層抽樣抽取10人,則抽取了理科男生4人,女生2人,文科男生1人,女生3人.所以.(2)的可能取值為0,1,2,3,,,,,的分布列為0123.【點(diǎn)睛】本題考查分層抽樣,考查超幾何分布及期望,考查運(yùn)算求解能力,是基礎(chǔ)題18.(1)(2)【解析】

(1)由正弦定理邊化角化簡(jiǎn)已知條件可求得,即可求得;(2)由余弦定理借助基本不等式可求得,即可求出的面積的最大值.【詳解】(1),,所以,所以,,,,.(2)由余弦定理得.,,當(dāng)且僅當(dāng)時(shí)取等,.所以的面積的最大值為.【點(diǎn)睛】本題考查了正余弦定理在解三角形中的應(yīng)用,考查了三角形面積的最值問(wèn)題,難度較易.19.(1)詳見(jiàn)解析(2)【解析】

(1)如圖,作,交于,連接.因?yàn)?,所以是的三等分點(diǎn),可得.因?yàn)?,,,所以,因?yàn)?,所以,因?yàn)椋?,所以,因?yàn)?,所以,所以,因?yàn)槠矫?,平面,所以平?又,平面,平面,所以平面.因?yàn)?,、平面,所以平面平面,所以平?(2)因?yàn)槭堑冗吶切?,,所?又因?yàn)?,,所以,所?又,平面,,所以平面.因?yàn)槠矫?,所以平面平?在平面內(nèi)作平面.以B點(diǎn)為坐標(biāo)原點(diǎn),分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,則,,,所以,,,.設(shè)為平面的法向量,則,即,令,可得.設(shè)為平面的法向量,則,即,令,可得.所以,則,所以二面角的正弦值為.20.(1)見(jiàn)解析;(2)(i)該農(nóng)場(chǎng)若采用延長(zhǎng)光照時(shí)間的方法,預(yù)計(jì)每年的利潤(rùn)為426千元;(ii)若采用降低夜間溫度的方法,預(yù)計(jì)每年的利潤(rùn)為424千元;(3)分布列見(jiàn)解析,.【解析】

(1)估計(jì)第一組數(shù)據(jù)平均數(shù)和第二組數(shù)據(jù)平均數(shù)來(lái)選擇.(2)對(duì)于兩種方法,先計(jì)算出每畝平均產(chǎn)量,再算農(nóng)場(chǎng)一年的利潤(rùn).(3)估計(jì)頻率分布直方圖可知,增產(chǎn)明顯的大棚間數(shù)為5間,由題意可知,的可能取值有0,1,2,3,再算出相應(yīng)的概率,寫出分布列,再求期望.【詳解】(1)第一組數(shù)據(jù)平均數(shù)為千斤/畝,第二組數(shù)據(jù)平均數(shù)為千斤/畝,可知第一組方法較好,所以采用延長(zhǎng)光照時(shí)間的方法;((2)(i)對(duì)于采用延長(zhǎng)光照時(shí)間的方法:每畝平均產(chǎn)量為千斤.∴該農(nóng)場(chǎng)一年的利潤(rùn)為千元.(ii)對(duì)于采用降低夜間溫度的方法:每畝平均產(chǎn)量為千斤,∴該農(nóng)場(chǎng)一年的利潤(rùn)為千元.因此,該農(nóng)場(chǎng)若采用延長(zhǎng)光照時(shí)間的方法,預(yù)計(jì)每年的利潤(rùn)為426千元;若采用降低夜間溫度的方法,預(yù)計(jì)每年的利潤(rùn)為424千元.(3)由圖可知,增產(chǎn)明顯的大棚間數(shù)為5間,由題意可知,的可能取值有0,1,2,3,;;;.所以的分布列為0123所以.【點(diǎn)睛】本題主要考查樣本估計(jì)總體和離散型隨機(jī)變量的分布列,還考查了數(shù)據(jù)處理和運(yùn)算求解的能力,屬于中檔題.21.(1)(2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論