




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
專題16等差數(shù)列及其前n項和【考綱要求】1、理解等差數(shù)列的定義,會推導(dǎo)等差數(shù)列的通項公式,能運用等差數(shù)列的通項公式解決一些簡單的問題.2、掌握等差中項的概念,深化認(rèn)識并能運用,掌握等差數(shù)列前n項和公式及其獲取思路.3、經(jīng)歷公式的推導(dǎo)過程,體驗從特殊到一般的研究方法,學(xué)會觀察、歸納、反思.4、熟練掌握等差數(shù)列的五個量a1,d,n,an,Sn的關(guān)系,能夠由其中三個求另外兩個.【思維導(dǎo)圖】一、等差數(shù)列的概念【考點總結(jié)】1、數(shù)列前n項和的概念如果一個數(shù)列從第2項起,每一項與它的前一項的差都等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示.等差數(shù)列{an}的概念可用符號表示為an+1-an=d(n∈N*).[化解疑難]1.“從第2項起”是指第1項前面沒有項,無法與后續(xù)條件中“與前一項的差”相吻合.2.“每一項與它的前一項的差”這一運算要求是指“相鄰且后項減去前項”,強調(diào)了:①作差的順序;②這兩項必須相鄰.3.定義中的“同一常數(shù)”是指全部的后項減去前一項都等于同一個常數(shù),否則這個數(shù)列不能稱為等差數(shù)列.2、等差中項如果三個數(shù)a,A,b成等差數(shù)列,那么A叫做a與b的等差中項.這三個數(shù)滿足的關(guān)系式是A=eq\f(a+b,2).[化解疑難]1.A是a與b的等差中項,則A=eq\f(a+b,2)或2A=a+b,即兩個數(shù)的等差中項有且只有一個.2.當(dāng)2A=a+b時,A是a與b的等差中項.3、等差數(shù)列的通項公式已知等差數(shù)列{an}的首項為a1,公差為d遞推公式通項公式an-an-1=d(n≥2)an=a1+(n-1)d(n∈N*)[化解疑難]由等差數(shù)列的通項公式an=a1+(n-1)d可得an=dn+(a1-d),如果設(shè)p=d,q=a1-d,那么an=pn+q,其中p,q是常數(shù).當(dāng)p≠0時,an是關(guān)于n的一次函數(shù);當(dāng)p=0時,an=q,等差數(shù)列為常數(shù)列.二、等差數(shù)列的前n項和【考點總結(jié)】1、數(shù)列前n項和的概念把a1+a2+…+an叫數(shù)列{an}的前n項和,記做Sn.則a1+a2+a3+…+an-1=Sn-1(n≥2).思考由Sn與Sn-1的表達式可以得出an=eq\b\lc\{(\a\vs4\al\co1(Sn-Sn-1(n≥2),,S1(n=1).))2、等差數(shù)列前n項和公式1.公式1:若{an}是等差數(shù)列,則Sn可以用首項a1和末項an表示為Sn=eq\f(n(a1+an),2).2.公式2:若首項為a1,公差為d,則Sn可以表示為Sn=na1+eq\f(1,2)n(n-1)d.3.推導(dǎo)方法:倒序相加法過程:Sn=a1+a2+…+an,Sn=an+an-1+…+a1,∵a1+an=a2+an-1=…=an+a1,∴2Sn=n(a1+an),∴Sn=eq\f(n(a1+an),2).4.從函數(shù)角度認(rèn)識等差數(shù)列的前n項和公式(1)公式的變形Sn=na1+eq\f(n(n-1)d,2)=eq\f(d,2)n2+(a1-eq\f(d,2))n.(2)從函數(shù)角度認(rèn)識公式①當(dāng)d≠0時,Sn是項數(shù)n的二次函數(shù),且不含常數(shù)項;②當(dāng)d=0時,Sn=na1,不是項數(shù)n的二次函數(shù).3、等差數(shù)列前n項和的性質(zhì)1.若數(shù)列{an}是公差為d的等差數(shù)列,Sn為其前n項和,則數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))也是等差數(shù)列,且公差為eq\f(d,2).2.若Sm,S2m,S3m分別為等差數(shù)列{an}的前m項,前2m項,前3m項的和,則Sm,S2m-Sm,S3m-S2m也成等差數(shù)列,公差為m2d.3.設(shè)兩個等差數(shù)列{an},{bn}的前n項和分別為Sn,Tn,則eq\f(an,bn)=eq\f(S2n-1,T2n-1).4.若等差數(shù)列的項數(shù)為2n,則S2n=n(an+an+1),S偶-S奇=nd,eq\f(S偶,S奇)=eq\f(an+1,an).5.若等差數(shù)列的項數(shù)為2n+1,則S2n+1=(2n+1)an+1,S偶-S奇=-an+1,eq\f(S偶,S奇)=eq\f(n,n+1).【題型匯編】題型一:等差數(shù)列及其通項公式題型二:等差數(shù)列的性質(zhì)題型三:等差數(shù)列的前n項和題型四:等差數(shù)列的前n項和的函數(shù)特性【題型講解】題型一:等差數(shù)列及其通項公式一、單選題1.(2022·江西九江·三模(文))等差數(shù)列SKIPIF1<0中,若SKIPIF1<0,則SKIPIF1<0(
)A.16 B.18 C.20 D.222.(2022·四川成都·三模(文))在等差數(shù)列SKIPIF1<0中,已知SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的公差為(
)A.SKIPIF1<0 B.0 C.1 D.23.(2022·山西大附中三模(理))已知等差數(shù)列SKIPIF1<0的各項均為正數(shù),其前n項和為SKIPIF1<0,且滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.28 B.30 C.32 D.354.(2022·陜西漢中·二模(理))已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則等差數(shù)列SKIPIF1<0的公差是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·廣西柳州·三模(文))記SKIPIF1<0為等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022·寧夏·平羅中學(xué)三模(文))設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則當(dāng)SKIPIF1<0取最小值時,SKIPIF1<0的值為(
)A.8 B.7 C.6 D.97.(2022·山西太原·一模(文))設(shè)SKIPIF1<0為等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.26 B.27 C.28 D.298.(2022·四川雅安·二模)設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0取最小值時,SKIPIF1<0的值為(
)A.19 B.20 C.21 D.20或219.(2022·四川成都·二模(理))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010.(2022·江蘇·金陵中學(xué)二模)設(shè)SKIPIF1<0是公差SKIPIF1<0的等差數(shù)列,如果SKIPIF1<0,那么SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型二:等差數(shù)列的性質(zhì)一、單選題1.(2022·黑龍江·哈爾濱三中模擬預(yù)測(理))已知等差數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.-110 B.-115 C.110 D.1152.(2022·北京東城·三模)在公差不為零的等差數(shù)列SKIPIF1<0中,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·安徽淮南·二模(理))已知等差數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.8 B.12 C.14 D.204.(2022·安徽滁州·二模(文))已知SKIPIF1<0是公差不為零的等差數(shù)列,若SKIPIF1<0,則SKIPIF1<0(
)A.7 B.8 C.9 D.105.(2022·四川·成都七中二模(文))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.6 B.7 C.8 D.96.(2022·廣東·潮州市瓷都中學(xué)三模)已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.2020 B.1021 C.1010 D.10027.(2022·江西·二模(文))己知等差數(shù)列SKIPIF1<0的前n項和是SKIPIF1<0,若公差SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<08.(2022·河南許昌·三模(文))設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.(2022·山西太原·二模(理))等差數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,若SKIPIF1<0則公差SKIPIF1<0(
)A.1 B.2 C.-1 D.-210.(2022·安徽省含山中學(xué)三模(文))已知等差數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(
)A.60 B.50 C.30 D.20二、多選題1.(2022·重慶·二模)設(shè)等差數(shù)列SKIPIF1<0前SKIPIF1<0項和為SKIPIF1<0,公差SKIPIF1<0,若SKIPIF1<0,則下列結(jié)論中正確的有(
)A.SKIPIF1<0 B.當(dāng)SKIPIF1<0時,SKIPIF1<0取得最小值C.SKIPIF1<0 D.當(dāng)SKIPIF1<0時,SKIPIF1<0的最小值為292.(2022·江蘇南京·二模)已知SKIPIF1<0是等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和,且SKIPIF1<0,則下列說法正確的是(
)A.SKIPIF1<0中的最大項為SKIPIF1<0 B.?dāng)?shù)列SKIPIF1<0的公差SKIPIF1<0C.SKIPIF1<0 D.當(dāng)且僅當(dāng)SKIPIF1<0時,SKIPIF1<0題型三:等差數(shù)列的前n項和一、單選題1.(2022·遼寧沈陽·一模)已知等差數(shù)列SKIPIF1<0的公差為2,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,則SKIPIF1<0的前n項和SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·河南·一模(文))已知數(shù)列SKIPIF1<0為等差數(shù)列,首項SKIPIF1<0,公差SKIPIF1<0,前n項和SKIPIF1<0,則SKIPIF1<0(
)A.8 B.9 C.10 D.113.(2022·寧夏中衛(wèi)·三模(理))已知數(shù)列SKIPIF1<0滿足點SKIPIF1<0在直線SKIPIF1<0上,則數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·湖南省臨澧縣第一中學(xué)二模)設(shè)SKIPIF1<0為等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0A.-6 B.-4 C.-2 D.25.(2022·江西師大附中三模(理))等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,滿足:SKIPIF1<0,則SKIPIF1<0(
)A.72 B.75 C.60 D.1006.(2022·內(nèi)蒙古呼和浩特·一模(理))已知在等差數(shù)列SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0(
)A.30 B.39 C.42 D.787.(2022·安徽合肥·二模(文))設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值為(
)A.10 B.12 C.13 D.148.(2022·重慶·二模)等差數(shù)列SKIPIF1<0的公差為2,前SKIPIF1<0項和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.3 B.6 C.9 D.129.(2022·內(nèi)蒙古呼和浩特·一模(文))記SKIPIF1<0為等差數(shù)列SKIPIF1<0的前n項和.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的公差為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010.(2022·浙江杭州·二模)設(shè)等差數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0()A.12 B.15 C.18 D.21二、多選題1.(2022·河北滄州·二模)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,記SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·廣東惠州·二模)已知SKIPIF1<0為等差數(shù)列,其前SKIPIF1<0項和SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則(
)A.公差SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.當(dāng)且僅當(dāng)SKIPIF1<0時SKIPIF1<0題型四:等差數(shù)列的前n項和的函數(shù)特性一、單選題1.(2022·寧夏·平羅中學(xué)三模(文))設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則當(dāng)SKIPIF1<0取最小值時,SKIPIF1<0的值為(
)A.8 B.7 C.6 D.92.(2022·四川雅安·二模)設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0取最小值時,SKIPIF1<0的值為(
)A.19 B.20 C.21 D.20或213.(2022·重慶·二模)等差數(shù)列SKIPIF1<0的公差為2,前SKIPIF1<0項和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.3 B.6 C.9 D.124.(2022·河南許昌·三模(文))已知SKIPIF1<0是等差數(shù)列SKIPIF1<0的前n項和,若對任意的SKIPIF1<0,均有SKIPIF1<0.成立,則SKIPIF1<0的最小值為(
)A.2 B.SKIPIF1<0 C.3 D.SKIPIF1<05.(2022·北京·潞河中學(xué)三模)已知SKIPIF1<0是等差數(shù)列,SKIPIF1<0是其前SKIPIF1<0項和.則“SKIPIF1<0”是“對于任意SKIPIF1<0且SKIPIF1<0,SKIPIF1<0”
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 優(yōu)化辦公流程管理規(guī)章制度
- 2025年巴彥淖爾貨運從業(yè)資格證考試卷
- 2025年江蘇貨運從業(yè)資格證模擬考試0題b2
- 人力資源企業(yè)勞動合同
- 2025年烏海貨運資格證考試有哪些項目
- 2025年宜昌貨運從業(yè)資格證模擬考試系統(tǒng)下載
- 2025年南京貨運從業(yè)資格考試技巧
- 動漫游戲創(chuàng)作與制作技術(shù)作業(yè)指導(dǎo)書
- 2025年南昌貨運從業(yè)資格證模擬考試題下載
- 2025年部編版語文小學(xué)三年級下冊口語與習(xí)作專項復(fù)習(xí)題
- 學(xué)術(shù)論文寫作與規(guī)范課件
- 口腔診所藥品管理制度
- 中醫(yī)子午流注十二時辰養(yǎng)生法
- 養(yǎng)老院風(fēng)險管控手冊
- 標(biāo)準(zhǔn)田字格帶拼音模板空白A4直接打印
- 小學(xué)語文 部編版 六年級下冊 第二單元 習(xí)作《寫作品梗概》
- 4.7 數(shù)學(xué)建?;顒樱荷L規(guī)律的描述教學(xué)設(shè)計
- 余杭區(qū)住宅房屋裝修備案申請表
- 住宅建筑工程施工重點與難點應(yīng)對措施方案
- 中醫(yī)婦科病證診斷療效標(biāo)準(zhǔn)
- 護士職業(yè)素養(yǎng)課件
評論
0/150
提交評論