重慶市涪陵中學2024-2025學年高三數(shù)學試題第二學期數(shù)學試題周練(二)含附加題含解析_第1頁
重慶市涪陵中學2024-2025學年高三數(shù)學試題第二學期數(shù)學試題周練(二)含附加題含解析_第2頁
重慶市涪陵中學2024-2025學年高三數(shù)學試題第二學期數(shù)學試題周練(二)含附加題含解析_第3頁
重慶市涪陵中學2024-2025學年高三數(shù)學試題第二學期數(shù)學試題周練(二)含附加題含解析_第4頁
重慶市涪陵中學2024-2025學年高三數(shù)學試題第二學期數(shù)學試題周練(二)含附加題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

重慶市涪陵中學2024-2025學年高三數(shù)學試題第二學期數(shù)學試題周練(二)含附加題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)是奇函數(shù),則的值為()A.-10 B.-9 C.-7 D.12.“幻方”最早記載于我國公元前500年的春秋時期《大戴禮》中.“階幻方”是由前個正整數(shù)組成的—個階方陣,其各行各列及兩條對角線所含的個數(shù)之和(簡稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.453.一個四面體所有棱長都是4,四個頂點在同一個球上,則球的表面積為()A. B. C. D.4.設,是兩條不同的直線,,是兩個不同的平面,給出下列四個命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個數(shù)為()A. B. C. D.5.已知函數(shù),則的最小值為()A. B. C. D.6.已知定義在上的可導函數(shù)滿足,若是奇函數(shù),則不等式的解集是()A. B. C. D.7.如圖所示程序框圖,若判斷框內(nèi)為“”,則輸出()A.2 B.10 C.34 D.988.若sin(α+3π2A.-12 B.-139.已知集合,,則A. B.C. D.10.不等式的解集記為,有下面四個命題:;;;.其中的真命題是()A. B. C. D.11.已知,則的值構成的集合是()A. B. C. D.12.已知函數(shù),則不等式的解集是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在一次醫(yī)療救助活動中,需要從A醫(yī)院某科室的6名男醫(yī)生、4名女醫(yī)生中分別抽調(diào)3名男醫(yī)生、2名女醫(yī)生,且男醫(yī)生中唯一的主任醫(yī)師必須參加,則不同的選派案共有________種.(用數(shù)字作答)14.某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗原料1千克、原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克,原料1千克.每桶甲產(chǎn)品的利潤是300元,每桶乙產(chǎn)品的利潤是400元.公司在生產(chǎn)這兩種產(chǎn)品的計劃中,要求每天消耗原料都不超過12千克.通過合理安排生產(chǎn)計劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤是__________元.15.曲線在點處的切線方程為________.16.在數(shù)列中,,,曲線在點處的切線經(jīng)過點,下列四個結論:①;②;③;④數(shù)列是等比數(shù)列;其中所有正確結論的編號是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研發(fā)投入.為了對新研發(fā)的產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格試銷,得到一組檢測數(shù)據(jù)如表所示:試銷價格(元)產(chǎn)品銷量(件)已知變量且有線性負相關關系,現(xiàn)有甲、乙、丙三位同學通過計算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學的計算結果是正確的.(1)試判斷誰的計算結果正確?(2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過,則稱該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機抽取個,求“理想數(shù)據(jù)”的個數(shù)的分布列和數(shù)學期望.18.(12分)在中,內(nèi)角的邊長分別為,且.(1)若,,求的值;(2)若,且的面積,求和的值.19.(12分)已知.(1)當時,求不等式的解集;(2)若,,證明:.20.(12分)已知與有兩個不同的交點,其橫坐標分別為().(1)求實數(shù)的取值范圍;(2)求證:.21.(12分)在①;②;③這三個條件中任選一個,補充在下面問題中的橫線上,并解答相應的問題.在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足________________,,求的面積.22.(10分)為了打好脫貧攻堅戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術支援,現(xiàn)對已選出的一組玉米的莖高進行統(tǒng)計,獲得莖葉圖如圖(單位:厘米),設莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.(1)求出易倒伏玉米莖高的中位數(shù);(2)根據(jù)莖葉圖的數(shù)據(jù),完成下面的列聯(lián)表:抗倒伏易倒伏矮莖高莖(3)根據(jù)(2)中的列聯(lián)表,是否可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關?附:,0.0500.0100.0013.8416.63510.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據(jù)分段函數(shù)表達式,先求得的值,然后結合的奇偶性,求得的值.【詳解】因為函數(shù)是奇函數(shù),所以,.故選:B本題主要考查分段函數(shù)的解析式、分段函數(shù)求函數(shù)值,考查數(shù)形結合思想.意在考查學生的運算能力,分析問題、解決問題的能力.2.B【解析】

計算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.本小題主要考查合情推理與演繹推理,考查等差數(shù)列前項和公式,屬于基礎題.3.A【解析】

將正四面體補成正方體,通過正方體的對角線與球的半徑關系,求解即可.【詳解】解:如圖,將正四面體補形成一個正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設球的半徑為,則,解得,所以,故選:A.本題主要考查多面體外接球問題,解決本題的關鍵在于,巧妙構造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉化,屬于中檔題.4.C【解析】

利用線線、線面、面面相應的判定與性質來解決.【詳解】如果兩條平行線中一條垂直于這個平面,那么另一條也垂直于這個平面知①正確;當直線平行于平面與平面的交線時也有,,故②錯誤;若,則垂直平面內(nèi)以及與平面平行的所有直線,故③正確;若,則存在直線且,因為,所以,從而,故④正確.故選:C.本題考查空間中線線、線面、面面的位置關系,里面涉及到了相應的判定定理以及性質定理,是一道基礎題.5.C【解析】

利用三角恒等變換化簡三角函數(shù)為標準正弦型三角函數(shù),即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.本題考查利用降冪擴角公式、輔助角公式化簡三角函數(shù),以及求三角函數(shù)的最值,屬綜合基礎題.6.A【解析】

構造函數(shù),根據(jù)已知條件判斷出的單調(diào)性.根據(jù)是奇函數(shù),求得的值,由此化簡不等式求得不等式的解集.【詳解】構造函數(shù),依題意可知,所以在上遞增.由于是奇函數(shù),所以當時,,所以,所以.由得,所以,故不等式的解集為.故選:A本小題主要考查構造函數(shù)法解不等式,考查利用導數(shù)研究函數(shù)的單調(diào)性,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.7.C【解析】

由題意,逐步分析循環(huán)中各變量的值的變化情況,即可得解.【詳解】由題意運行程序可得:,,,;,,,;,,,;不成立,此時輸出.故選:C.本題考查了程序框圖,只需在理解程序框圖的前提下細心計算即可,屬于基礎題.8.B【解析】

由三角函數(shù)的誘導公式和倍角公式化簡即可.【詳解】因為sinα+3π2=3故選B本題考查了三角函數(shù)的誘導公式和倍角公式,靈活掌握公式是關鍵,屬于基礎題.9.D【解析】

因為,,所以,,故選D.10.A【解析】

作出不等式組表示的可行域,然后對四個選項一一分析可得結果.【詳解】作出可行域如圖所示,當時,,即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A此題考查命題的真假判斷與應用,著重考查作圖能力,熟練作圖,正確分析是關鍵,屬于中檔題.11.C【解析】

對分奇數(shù)、偶數(shù)進行討論,利用誘導公式化簡可得.【詳解】為偶數(shù)時,;為奇數(shù)時,,則的值構成的集合為.本題考查三角式的化簡,誘導公式,分類討論,屬于基本題.12.B【解析】

由導數(shù)確定函數(shù)的單調(diào)性,利用函數(shù)單調(diào)性解不等式即可.【詳解】函數(shù),可得,時,,單調(diào)遞增,∵,故不等式的解集等價于不等式的解集..∴.故選:B.本題主要考查了利用導數(shù)判定函數(shù)的單調(diào)性,根據(jù)單調(diào)性解不等式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

首先選派男醫(yī)生中唯一的主任醫(yī)師,由題意利用排列組合公式即可確定不同的選派案方法種數(shù).【詳解】首先選派男醫(yī)生中唯一的主任醫(yī)師,然后從名男醫(yī)生、名女醫(yī)生中分別抽調(diào)2名男醫(yī)生、名女醫(yī)生,故選派的方法為:.故答案為.解排列組合問題要遵循兩個原則:一是按元素(或位置)的性質進行分類;二是按事情發(fā)生的過程進行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).14.1元【解析】設分別生產(chǎn)甲乙兩種產(chǎn)品為桶,桶,利潤為元

則根據(jù)題意可得目標函數(shù),作出可行域,如圖所示作直線然后把直線向可行域平移,

由圖象知當直線經(jīng)過時,目標函數(shù)的截距最大,此時最大,

由可得,即此時最大,

即該公司每天生產(chǎn)的甲4桶,乙4桶,可獲得最大利潤,最大利潤為1.【點睛】本題考查用線性規(guī)劃知識求利潤的最大值,根據(jù)條件建立不等式關系,以及利用線性規(guī)劃的知識進行求解是解決本題的關鍵.15.【解析】

求導,得到和,利用點斜式即可求得結果.【詳解】由于,,所以,由點斜式可得切線方程為.故答案為:.本題考查利用導數(shù)的幾何意義求切線方程,屬基礎題.16.①③④【解析】

先利用導數(shù)求得曲線在點處的切線方程,由此求得與的遞推關系式,進而證得數(shù)列是等比數(shù)列,由此判斷出四個結論中正確的結論編號.【詳解】∵,∴曲線在點處的切線方程為,則.∵,∴,則是首項為1,公比為的等比數(shù)列,從而,,.故所有正確結論的編號是①③④.故答案為:①③④本小題主要考查曲線的切線方程的求法,考查根據(jù)遞推關系式證明等比數(shù)列,考查等比數(shù)列通項公式和前項和公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)乙同學正確(2)分布列見解析,【解析】

(1)由已知可得甲不正確,求出樣本中心點代入驗證,即可得出結論;(2)根據(jù)(1)中得到的回歸方程,求出估值,得到“理想數(shù)據(jù)”的個數(shù),確定“理想數(shù)據(jù)”的個數(shù)的可能值,并求出概率,得到分布列,即可求解.【詳解】(1)已知變量具有線性負相關關系,故甲不正確,,代入兩個回歸方程,驗證乙同學正確,故回歸方程為:(2)由(1)得到的回歸方程,計算估計數(shù)據(jù)如下表:“理想數(shù)據(jù)”有3個,故“理想數(shù)據(jù)”的個數(shù)的取值為:.,,于是“理想數(shù)據(jù)”的個數(shù)的分布列本題考查樣本回歸中心點與線性回歸直線方程關系,以及離散型隨機變量的分布列和期望,意在考查邏輯推理、數(shù)學計算能力,屬于中檔題.18.(1);(2).【解析】

(1)先由余弦定理求得,再由正弦定理計算即可得到所求值;

(2)運用二倍角的余弦公式和兩角和的正弦公式,化簡可得sinA+sinB=5sinC,運用正弦定理和三角形的面積公式可得a,b的方程組,解方程即可得到所求值.【詳解】解:(1)由余弦定理由正弦定理得(2)由已知得:所以------①又所以------②由①②解得本題考查正弦定理、余弦定理和面積公式的運用,以及三角函數(shù)的恒等變換,考查化簡整理的運算能力,屬于中檔題.19.(1)(2)見證明【解析】

(1)利用零點分段法討論去掉絕對值求解;(2)利用絕對值不等式的性質進行證明.【詳解】(1)解:當時,不等式可化為.當時,,,所以;當時,,.所以不等式的解集是.(2)證明:由,,得,,,又,所以,即.本題主要考查含有絕對值不等式問題的求解,含有絕對值不等式的解法一般是使用零點分段討論法.20.(1);(2)見解析【解析】

(1)利用導數(shù)研究的單調(diào)性,分析函數(shù)性質,數(shù)形結合,即得解;(2)構造函數(shù),可證得:,,分析直線,與從左到右交點的橫坐標,在,處的切線即得解.【詳解】(1)設函數(shù),,令,令故在單調(diào)遞減,在單調(diào)遞增,∴,∵時;;時.(2)①過點,的直線為,則令,,,.②過點,的直線為,則,在上單調(diào)遞增.③設直線,與從左到右交點的橫坐標依次為,,由圖知.④在,處的切線分別為,,同理可以證得,.記直線與兩切線和從左到右交點的橫坐標依次為,.本題考查了函數(shù)與導數(shù)綜合,考查了學生數(shù)形結合,綜合分析,轉化劃歸,邏輯推理,數(shù)學運算的能力,屬于較難題.21.橫線處任填一個都可以,面積為.【解析】

無論選哪一個,都先由正弦定理化邊為角后,由誘導公式,展開后,可求得角,再由余弦定理求得,從而易求得三角形面積.【詳解】在橫線上填寫“”.解:由正弦定理,得.由,得.由,得.所以.又(若,則這與矛盾),所以.又,得.由余弦定理及,得,即.將代入,解得.所以.在橫線上填寫“”.解:由及正弦定理,得.又,所以有.因為,所以.從而有.又,所以由余弦定理及,得即.將代入,解得.所以.在橫線上填寫“”解:由正弦定理,得.由,得,所以由二倍角公式,得.由,得,所以.所以,即.由余弦定理及,得.即.將代入,解得.所以.本題考查三角形面積公式,考查正弦定理、余弦定理,兩角和的正弦公式等,正弦定理進行邊角轉換,求三角形面積時,①若三角形中已知一個角(角的大小或該角的正、余弦值),結合題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論