版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.中國古典樂器一般按“八音”分類.這是我國最早按樂器的制造材料來對樂器進(jìn)行分類的方法,最先見于《周禮·春官·大師》,分為“金、石、土、革、絲、木、匏(páo)、竹”八音,其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器,“絲”為彈撥樂器.現(xiàn)從“八音”中任取不同的“兩音”,則含有打擊樂器的概率為()A. B. C. D.2.我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測雨”題:在下雨時(shí),用一個(gè)圓臺(tái)形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺(tái)體的體積公式).A.2寸 B.3寸 C.4寸 D.5寸3.已知數(shù)列,,,…,是首項(xiàng)為8,公比為得等比數(shù)列,則等于()A.64 B.32 C.2 D.44.已知實(shí)數(shù)滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.115.將函數(shù)的圖象沿軸向左平移個(gè)單位長度后,得到函數(shù)的圖象,則“”是“是偶函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.已知f(x),g(x)都是偶函數(shù),且在[0,+∞)上單調(diào)遞增,設(shè)函數(shù)F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)7.達(dá)芬奇的經(jīng)典之作《蒙娜麗莎》舉世聞名.如圖,畫中女子神秘的微笑,,數(shù)百年來讓無數(shù)觀賞者人迷.某業(yè)余愛好者對《蒙娜麗莎》的縮小影像作品進(jìn)行了粗略測繪,將畫中女子的嘴唇近似看作一個(gè)圓弧,在嘴角處作圓弧的切線,兩條切線交于點(diǎn),測得如下數(shù)據(jù):(其中).根據(jù)測量得到的結(jié)果推算:將《蒙娜麗莎》中女子的嘴唇視作的圓弧對應(yīng)的圓心角大約等于()A. B. C. D.8.已知函數(shù)fx=sinωx+π6+A.16,13 B.19.設(shè)雙曲線(a>0,b>0)的一個(gè)焦點(diǎn)為F(c,0)(c>0),且離心率等于,若該雙曲線的一條漸近線被圓x2+y2﹣2cx=0截得的弦長為2,則該雙曲線的標(biāo)準(zhǔn)方程為()A. B.C. D.10.國務(wù)院發(fā)布《關(guān)于進(jìn)一步調(diào)整優(yōu)化結(jié)構(gòu)、提高教育經(jīng)費(fèi)使用效益的意見》中提出,要優(yōu)先落實(shí)教育投入.某研究機(jī)構(gòu)統(tǒng)計(jì)了年至年國家財(cái)政性教育經(jīng)費(fèi)投入情況及其在中的占比數(shù)據(jù),并將其繪制成下表,由下表可知下列敘述錯(cuò)誤的是()A.隨著文化教育重視程度的不斷提高,國在財(cái)政性教育經(jīng)費(fèi)的支出持續(xù)增長B.年以來,國家財(cái)政性教育經(jīng)費(fèi)的支出占比例持續(xù)年保持在以上C.從年至年,中國的總值最少增加萬億D.從年到年,國家財(cái)政性教育經(jīng)費(fèi)的支出增長最多的年份是年11.已知函數(shù),則()A. B. C. D.12.在的展開式中,的系數(shù)為()A.-120 B.120 C.-15 D.15二、填空題:本題共4小題,每小題5分,共20分。13.已知i為虛數(shù)單位,復(fù)數(shù),則=_______.14.小李參加有關(guān)“學(xué)習(xí)強(qiáng)國”的答題活動(dòng),要從4道題中隨機(jī)抽取2道作答,小李會(huì)其中的三道題,則抽到的2道題小李都會(huì)的概率為_____.15.已知向量=(-4,3),=(6,m),且,則m=__________.16.設(shè)是定義在上的函數(shù),且,對任意,若經(jīng)過點(diǎn)的一次函數(shù)與軸的交點(diǎn)為,且互不相等,則稱為關(guān)于函數(shù)的平均數(shù),記為.當(dāng)_________時(shí),為的幾何平均數(shù).(只需寫出一個(gè)符合要求的函數(shù)即可)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若曲線存在與軸垂直的切線,求的取值范圍.(2)當(dāng)時(shí),證明:.18.(12分)已知二階矩陣A=abcd,矩陣A屬于特征值λ1=-1的一個(gè)特征向量為α119.(12分)交通部門調(diào)查在高速公路上的平均車速情況,隨機(jī)抽查了60名家庭轎車駕駛員,統(tǒng)計(jì)其中有40名男性駕駛員,其中平均車速超過的有30人,不超過的有10人;在其余20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.(1)完成下面的列聯(lián)表,并據(jù)此判斷是否有的把握認(rèn)為,家庭轎車平均車速超過與駕駛員的性別有關(guān);平均車速超過的人數(shù)平均車速不超過的人數(shù)合計(jì)男性駕駛員女性駕駛員合計(jì)(2)根據(jù)這些樣本數(shù)據(jù)來估計(jì)總體,隨機(jī)調(diào)查3輛家庭轎車,記這3輛車中,駕駛員為女性且平均車速不超過的人數(shù)為,假定抽取的結(jié)果相互獨(dú)立,求的分布列和數(shù)學(xué)期望.參考公式:其中臨界值表:0.0500.0250.0100.0050.0013.8415.0246.6357.87910.82820.(12分)P是圓上的動(dòng)點(diǎn),P點(diǎn)在x軸上的射影是D,點(diǎn)M滿足.(1)求動(dòng)點(diǎn)M的軌跡C的方程,并說明軌跡是什么圖形;(2)過點(diǎn)的直線l與動(dòng)點(diǎn)M的軌跡C交于不同的兩點(diǎn)A,B,求以O(shè)A,OB為鄰邊的平行四邊形OAEB的頂點(diǎn)E的軌跡方程.21.(12分)如圖,己知圓和雙曲線,記與軸正半軸、軸負(fù)半軸的公共點(diǎn)分別為、,又記與在第一、第四象限的公共點(diǎn)分別為、.(1)若,且恰為的左焦點(diǎn),求的兩條漸近線的方程;(2)若,且,求實(shí)數(shù)的值;(3)若恰為的左焦點(diǎn),求證:在軸上不存在這樣的點(diǎn),使得.22.(10分)已知數(shù)列為公差為d的等差數(shù)列,,,且,,依次成等比數(shù)列,.(1)求數(shù)列的前n項(xiàng)和;(2)若,求數(shù)列的前n項(xiàng)和為.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
分別求得所有基本事件個(gè)數(shù)和滿足題意的基本事件個(gè)數(shù),根據(jù)古典概型概率公式可求得結(jié)果.【詳解】從“八音”中任取不同的“兩音”共有種取法;“兩音”中含有打擊樂器的取法共有種取法;所求概率.故選:.【點(diǎn)睛】本題考查古典概型概率問題的求解,關(guān)鍵是能夠利用組合的知識(shí)求得基本事件總數(shù)和滿足題意的基本事件個(gè)數(shù).2.B【解析】試題分析:根據(jù)題意可得平地降雨量,故選B.考點(diǎn):1.實(shí)際應(yīng)用問題;2.圓臺(tái)的體積.3.A【解析】
根據(jù)題意依次計(jì)算得到答案.【詳解】根據(jù)題意知:,,故,,.故選:.【點(diǎn)睛】本題考查了數(shù)列值的計(jì)算,意在考查學(xué)生的計(jì)算能力.4.A【解析】
根據(jù)約束條件畫出可行域,再將目標(biāo)函數(shù)化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時(shí)候?yàn)檫^點(diǎn)的時(shí)候,解得所以,此時(shí)故選A項(xiàng)【點(diǎn)睛】本題考查線性規(guī)劃求一次相加的目標(biāo)函數(shù),屬于常規(guī)題型,是簡單題.5.A【解析】
求出函數(shù)的解析式,由函數(shù)為偶函數(shù)得出的表達(dá)式,然后利用充分條件和必要條件的定義判斷即可.【詳解】將函數(shù)的圖象沿軸向左平移個(gè)單位長度,得到的圖象對應(yīng)函數(shù)的解析式為,若函數(shù)為偶函數(shù),則,解得,當(dāng)時(shí),.因此,“”是“是偶函數(shù)”的充分不必要條件.故選:A.【點(diǎn)睛】本題考查充分不必要條件的判斷,同時(shí)也考查了利用圖象變換求三角函數(shù)解析式以及利用三角函數(shù)的奇偶性求參數(shù),考查運(yùn)算求解能力與推理能力,屬于中等題.6.A【解析】試題分析:由題意得,F(xiàn)(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(xiàn)(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點(diǎn):1.函數(shù)的性質(zhì);2.分類討論的數(shù)學(xué)思想.【思路點(diǎn)睛】本題在在解題過程中抓住偶函數(shù)的性質(zhì),避免了由于單調(diào)性不同導(dǎo)致1-a與1+a大小不明確的討論,從而使解題過程得以優(yōu)化,另外,不要忘記定義域,如果要研究奇函數(shù)或者偶函數(shù)的值域、最值、單調(diào)性等問題,通常先在原點(diǎn)一側(cè)的區(qū)間(對奇(偶)函數(shù)而言)或某一周期內(nèi)(對周期函數(shù)而言)考慮,然后推廣到整個(gè)定義域上.7.A【解析】
由已知,設(shè).可得.于是可得,進(jìn)而得出結(jié)論.【詳解】解:依題意,設(shè).則.,.設(shè)《蒙娜麗莎》中女子的嘴唇視作的圓弧對應(yīng)的圓心角為.則,.故選:A.【點(diǎn)睛】本題考查了直角三角形的邊角關(guān)系、三角函數(shù)的單調(diào)性、切線的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.8.A【解析】
將fx整理為3sinωx+π3,根據(jù)x的范圍可求得ωx+π3∈π【詳解】f當(dāng)x∈0,π時(shí),又f0=3sin由fx在0,π上的值域?yàn)?2解得:ω∈本題正確選項(xiàng):A【點(diǎn)睛】本題考查利用正弦型函數(shù)的值域求解參數(shù)范圍的問題,關(guān)鍵是能夠結(jié)合正弦型函數(shù)的圖象求得角的范圍的上下限,從而得到關(guān)于參數(shù)的不等式.9.C【解析】
由題得,,又,聯(lián)立解方程組即可得,,進(jìn)而得出雙曲線方程.【詳解】由題得①又該雙曲線的一條漸近線方程為,且被圓x2+y2﹣2cx=0截得的弦長為2,所以②又③由①②③可得:,,所以雙曲線的標(biāo)準(zhǔn)方程為.故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡單幾何性質(zhì),圓的方程的有關(guān)計(jì)算,考查了學(xué)生的計(jì)算能力.10.C【解析】
觀察圖表,判斷四個(gè)選項(xiàng)是否正確.【詳解】由表易知、、項(xiàng)均正確,年中國為萬億元,年中國為萬億元,則從年至年,中國的總值大約增加萬億,故C項(xiàng)錯(cuò)誤.【點(diǎn)睛】本題考查統(tǒng)計(jì)圖表,正確認(rèn)識(shí)圖表是解題基礎(chǔ).11.A【解析】
根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【詳解】依題意,.故選:A【點(diǎn)睛】本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎(chǔ)題.12.C【解析】
寫出展開式的通項(xiàng)公式,令,即,則可求系數(shù).【詳解】的展開式的通項(xiàng)公式為,令,即時(shí),系數(shù)為.故選C【點(diǎn)睛】本題考查二項(xiàng)式展開的通項(xiàng)公式,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先把復(fù)數(shù)進(jìn)行化簡,然后利用求模公式可得結(jié)果.【詳解】.故答案為:.【點(diǎn)睛】本題主要考查復(fù)數(shù)模的求解,利用復(fù)數(shù)的運(yùn)算把復(fù)數(shù)化為的形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).14.【解析】
從四道題中隨機(jī)抽取兩道共6種情況,抽到的兩道全都會(huì)的情況有3種,即可得到概率.【詳解】由題:從從4道題中隨機(jī)抽取2道作答,共有種,小李會(huì)其中的三道題,則抽到的2道題小李都會(huì)的情況共有種,所以其概率為.故答案為:【點(diǎn)睛】此題考查根據(jù)古典概型求概率,關(guān)鍵在于根據(jù)題意準(zhǔn)確求出基本事件的總數(shù)和某一事件包含的基本事件個(gè)數(shù).15.8.【解析】
利用轉(zhuǎn)化得到加以計(jì)算,得到.【詳解】向量則.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算、平面向量的數(shù)量積、平面向量的垂直以及轉(zhuǎn)化與化歸思想的應(yīng)用.屬于容易題.16.【解析】
由定義可知三點(diǎn)共線,即,通過整理可得,繼而可求出正確答案.【詳解】解:根據(jù)題意,由定義可知:三點(diǎn)共線.故可得:,即,整理得:,故可以選擇等.故答案為:.【點(diǎn)睛】本題考查了兩點(diǎn)的斜率公式,考查了推理能力,考查了運(yùn)算能力.本題關(guān)鍵是分析出三點(diǎn)共線.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)證明見解析【解析】
(1)在上有解,,設(shè),求導(dǎo)根據(jù)函數(shù)的單調(diào)性得到最值,得到答案.(2)證明,只需證,記,求導(dǎo)得到函數(shù)的單調(diào)性,得到函數(shù)的最小值,得到證明.【詳解】(1)由題可得,在上有解,則,令,,當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以是的最大值點(diǎn),所以.(2)由,所以,要證明,只需證,即證.記在上單調(diào)遞增,且,當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.所以是的最小值點(diǎn),,則,故.【點(diǎn)睛】本題考查了函數(shù)的切線問題,證明不等式,意在考查學(xué)生的綜合應(yīng)用能力和轉(zhuǎn)化能力.18.A=【解析】
運(yùn)用矩陣定義列出方程組求解矩陣A【詳解】由特征值、特征向量定義可知,Aα即abc同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩陣【點(diǎn)睛】本題考查了由矩陣特征值和特征向量求矩陣,只需運(yùn)用定義得出方程組即可求出結(jié)果,較為簡單19.(1)填表見解析;有的把握認(rèn)為,平均車速超過與性別有關(guān)(2)詳見解析【解析】
(1)根據(jù)題目所給數(shù)據(jù)填寫列聯(lián)表,計(jì)算出的值,由此判斷出有的把握認(rèn)為,平均車速超過與性別有關(guān).(2)利用二項(xiàng)分布的知識(shí)計(jì)算出分布列和數(shù)學(xué)期望.【詳解】(1)平均車速超過的人數(shù)平均車速不超過的人數(shù)合計(jì)男性駕駛員301040女性駕駛員51520合計(jì)352560因?yàn)?,,所以有的把握認(rèn)為,平均車速超過與性別有關(guān).(2)服從,即,.所以的分布列如下0123的期望【點(diǎn)睛】本小題主要考查列聯(lián)表獨(dú)立性檢驗(yàn),考查二項(xiàng)分布分布列和數(shù)學(xué)期望,屬于中檔題.20.(1)點(diǎn)M的軌跡C的方程為,軌跡C是以,為焦點(diǎn),長軸長為4的橢圓(2)【解析】
(1)設(shè),根據(jù)可求得,代入圓的方程可得所求軌跡方程;根據(jù)軌跡方程可知軌跡是以,為焦點(diǎn),長軸長為的橢圓;(2)設(shè),與橢圓方程聯(lián)立,利用求得;利用韋達(dá)定理表示出與,根據(jù)平行四邊形和向量的坐標(biāo)運(yùn)算求得,消去后得到軌跡方程;根據(jù)求得的取值范圍,進(jìn)而得到最終結(jié)果.【詳解】(1)設(shè),則由知:點(diǎn)在圓上點(diǎn)的軌跡的方程為:軌跡是以,為焦點(diǎn),長軸長為的橢圓(2)設(shè),由題意知的斜率存在設(shè),代入得:則,解得:設(shè),,則四邊形為平行四邊形又∴,消去得:頂點(diǎn)的軌跡方程為【點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年09月安徽2024年徽商銀行滁州分行校園招考筆試歷年參考題庫附帶答案詳解
- 甘肅省張掖市甘州區(qū)2025屆中考生物對點(diǎn)突破模擬試卷含解析
- 2024年09月上海2024交通銀行交銀金融科技校園招考筆試歷年參考題庫附帶答案詳解
- 2025至2031年中國高速牙科球軸承行業(yè)投資前景及策略咨詢研究報(bào)告
- 2024年清心茶項(xiàng)目可行性研究報(bào)告
- 2024年泡沫砼防水隔熱層項(xiàng)目可行性研究報(bào)告
- 2024年旋轉(zhuǎn)薄膜烘箱項(xiàng)目可行性研究報(bào)告
- 2025至2031年中國沙灘車護(hù)板行業(yè)投資前景及策略咨詢研究報(bào)告
- 2024年不銹鋼波輪螺釘項(xiàng)目可行性研究報(bào)告
- 2025至2031年中國加長馬車螺栓行業(yè)投資前景及策略咨詢研究報(bào)告
- 2022年杭州市建設(shè)行業(yè)職業(yè)技能競賽裝配式建筑施工員賽項(xiàng)技術(shù)文件
- 2022年部編版四年級道德與法治上冊全冊教案
- 植物細(xì)胞中氨基酸轉(zhuǎn)運(yùn)蛋白的一些已知或未知的功能
- 山東省高等學(xué)校精品課程
- 管束干燥機(jī)使用說明書
- 三軸試驗(yàn)報(bào)告(共12頁)
- 生活垃圾填埋場污染控制標(biāo)準(zhǔn)
- 監(jiān)控系統(tǒng)自檢報(bào)告
- 工業(yè)機(jī)器人論文
- 代理商授權(quán)書
- 中南財(cái)經(jīng)政法大學(xué)工商管理碩士(MBA)
評論
0/150
提交評論