版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年山西省興縣交樓申中學中考四模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,O為直線AB上一點,OE平分∠BOC,OD⊥OE于點O,若∠BOC=80°,則∠AOD的度數(shù)是()A.70° B.50° C.40° D.35°2.“嫦娥一號”衛(wèi)星順利進入繞月工作軌道,行程約有1800000千米,1800000這個數(shù)用科學記數(shù)法可以表示為A. B. C. D.3.如圖,直線AB與半徑為2的⊙O相切于點C,D是⊙O上一點,且∠EDC=30°,弦EF∥AB,則EF的長度為()A.2 B.2 C. D.24.不等式5+2x<1的解集在數(shù)軸上表示正確的是().A. B. C. D.5.下列運算正確的是()A.x?x4=x5 B.x6÷x3=x2 C.3x2﹣x2=3 D.(2x2)3=6x66.我國古代數(shù)學名著《孫子算經(jīng)》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設大馬有x匹,小馬有y匹,那么可列方程組為()A. B. C. D.7.如圖,按照三視圖確定該幾何體的側面積是(單位:cm)()A.24πcm2 B.48πcm2 C.60πcm2 D.80πcm28.如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,已知MN∥AB,MC=6,NC=,則四邊形MABN的面積是()A. B. C. D.9.在一次男子馬拉松長跑比賽中,隨機抽取了10名選手,記錄他們的成績(所用的時間)如下:選手12345678910時間(min)129136140145146148154158165175由此所得的以下推斷不正確的是()A.這組樣本數(shù)據(jù)的平均數(shù)超過130B.這組樣本數(shù)據(jù)的中位數(shù)是147C.在這次比賽中,估計成績?yōu)?30min的選手的成績會比平均成績差D.在這次比賽中,估計成績?yōu)?42min的選手,會比一半以上的選手成績要好10.如圖,AB∥CD,E為CD上一點,射線EF經(jīng)過點A,EC=EA.若∠CAE=30°,則∠BAF=()A.30°B.40°C.50°D.60°二、填空題(共7小題,每小題3分,滿分21分)11.若點A(1,m)在反比例函數(shù)y=的圖象上,則m的值為________.12.因式分解:mn(n﹣m)﹣n(m﹣n)=_____.13.如圖,有一塊邊長為4的正方形塑料模板ABCD,將一塊足夠大的直角三角板的直角頂點落在A點,兩條直角邊分別與CD交于點F,與CB延長線交于點E.則四邊形AECF的面積是.14.某書店把一本新書按標價的九折出售,仍可獲利20%,若該書的進價為21元,則標價為___________元.15.因式分解:4ax2﹣4ay2=_____.16.已知y與x的函數(shù)滿足下列條件:①它的圖象經(jīng)過(1,1)點;②當時,y隨x的增大而減?。畬懗鲆粋€符合條件的函數(shù):__________.17.一個不透明的盒子里有n個除顏色外其他完全相同的小球,其中有9個黃球每次摸球前先將盒子里的球搖勻,任意摸出一個球記下顏色后放回盒子,通過大量重復摸球試驗后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在,那么估計盒子中小球的個數(shù)是_______.三、解答題(共7小題,滿分69分)18.(10分)已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處,如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.若△OCP與△PDA的面積比為1:4,求邊CD的長.如圖2,在(Ⅰ)的條件下,擦去折痕AO、線段OP,連接BP.動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問當動點M、N在移動的過程中,線段EF的長度是否發(fā)生變化?若變化,說明變化規(guī)律.若不變,求出線段EF的長度.19.(5分)(1)計算:()﹣1+﹣(π﹣2018)0﹣4cos30°(2)解不等式組:,并把它的解集在數(shù)軸上表示出來.20.(8分)已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.如圖,已知折痕與邊BC交于點O,連接AP、OP、OA.(1)求證:;(2)若△OCP與△PDA的面積比為1:4,求邊AB的長.21.(10分)如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象交于A(2,3),B(6,n)兩點.分別求出一次函數(shù)與反比例函數(shù)的解析式;求△OAB的面積.22.(10分)計算:(π﹣3.14)0+|﹣1|﹣2sin45°+(﹣1)1.23.(12分)(1)(﹣2)2+2sin45°﹣(2)解不等式組,并將其解集在如圖所示的數(shù)軸上表示出來.24.(14分)如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點,A、B兩點的坐標分別為(﹣1,0)、(0,﹣3).求拋物線的函數(shù)解析式;點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標;在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】分析:由OE是∠BOC的平分線得∠COE=40°,由OD⊥OE得∠DOC=50°,從而可求出∠AOD的度數(shù).詳解:∵OE是∠BOC的平分線,∠BOC=80°,∴∠COE=∠BOC=×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故選B.點睛:本題考查了角平分線的定義:從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線叫做這個角的平分線.性質:若OC是∠AOB的平分線則∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.2、C【解析】分析:一個絕對值大于10的數(shù)可以表示為的形式,其中為整數(shù).確定的值時,整數(shù)位數(shù)減去1即可.當原數(shù)絕對值>1時,是正數(shù);當原數(shù)的絕對值<1時,是負數(shù).詳解:1800000這個數(shù)用科學記數(shù)法可以表示為故選C.點睛:考查科學記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關鍵.3、B【解析】本題考查的圓與直線的位置關系中的相切.連接OC,EC所以∠EOC=2∠D=60°,所以△ECO為等邊三角形.又因為弦EF∥AB所以OC垂直EF故∠OEF=30°所以EF=OE=2.4、C【解析】
先解不等式得到x<-1,根據(jù)數(shù)軸表示數(shù)的方法得到解集在-1的左邊.【詳解】5+1x<1,移項得1x<-4,系數(shù)化為1得x<-1.故選C.【點睛】本題考查了在數(shù)軸上表示不等式的解集:先求出不等式組的解集,然后根據(jù)數(shù)軸表示數(shù)的方法把對應的未知數(shù)的取值范圍通過畫區(qū)間的方法表示出來,等號時用實心,不等時用空心.5、A【解析】根據(jù)同底數(shù)冪的乘法,同底數(shù)冪的除法,合并同類項,冪的乘方與積的乘方運算法則逐一計算作出判斷:A、x?x4=x5,原式計算正確,故本選項正確;B、x6÷x3=x3,原式計算錯誤,故本選項錯誤;C、3x2﹣x2=2x2,原式計算錯誤,故本選項錯誤;D、(2x2)3=8x,原式計算錯誤,故本選項錯誤.故選A.6、C【解析】
設大馬有x匹,小馬有y匹,根據(jù)題意可得等量關系:①大馬數(shù)+小馬數(shù)=100;②大馬拉瓦數(shù)+小馬拉瓦數(shù)=100,根據(jù)等量關系列出方程組即可.【詳解】解:設大馬有x匹,小馬有y匹,由題意得:,故選C.【點睛】此題主要考查了由實際問題抽象出二元一次方程組,關鍵是正確理解題意,找出題目中的等量關系,列出方程組.7、A【解析】
由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀,確定圓錐的母線長和底面半徑,從而確定其側面積.【詳解】解:由主視圖和左視圖為三角形判斷出是錐體,由俯視圖是圓形可判斷出這個幾何體應該是圓錐;根據(jù)三視圖知:該圓錐的母線長為6cm,底面半徑為8÷1=4cm,故側面積=πrl=π×6×4=14πcm1.故選:A.【點睛】此題考查學生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.8、C【解析】連接CD,交MN于E,∵將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,∴MN⊥CD,且CE=DE.∴CD=2CE.∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.∴.∵在△CMN中,∠C=90°,MC=6,NC=,∴∴.∴.故選C.9、C【解析】分析:要求平均數(shù)只要求出數(shù)據(jù)之和再除以總個數(shù)即可;對于中位數(shù),因圖中是按從小到大的順序排列的,所以只要找出最中間的一個數(shù)(或最中間的兩個數(shù))即可求解.詳解:平均數(shù)=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故這組樣本數(shù)據(jù)的平均數(shù)超過130,A正確,C錯誤;因為表中是按從小到大的順序排列的,一共10名選手,中位數(shù)為第五位和第六位的平均數(shù),故中位數(shù)是(146+148)÷2=147(min),故B正確,D正確.故選C.點睛:本題考查的是平均數(shù)和中位數(shù)的定義.要注意,當所給數(shù)據(jù)有單位時,所求得的平均數(shù)和中位數(shù)與原數(shù)據(jù)的單位相同,不要漏單位.10、D【解析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故選D.點睛:本題考查的是平行線的性質,熟知兩直線平行,同位角相等是解答此題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、3【解析】試題解析:把A(1,m)代入y=得:m=3.所以m的值為3.12、【解析】mn(n-m)-n(m-n)=mn(n-m)+n(n-m)=n(n-m)(m+1),故答案為n(n-m)(m+1).13、1【解析】
∵四邊形ABCD為正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它們都加上四邊形ABCF的面積,可得到四邊形AECF的面積=正方形的面積=1.14、28【解析】設標價為x元,那么0.9x-21=21×20%,x=28.15、4a(x﹣y)(x+y)【解析】
首先提取公因式4a,再利用平方差公式分解因式即可.【詳解】4ax2-4ay2=4a(x2-y2)=4a(x-y)(x+y).故答案為4a(x-y)(x+y).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關鍵.16、y=-x+2(答案不唯一)【解析】①圖象經(jīng)過(1,1)點;②當x>1時.y隨x的增大而減小,這個函數(shù)解析式為y=-x+2,故答案為y=-x+2(答案不唯一).17、1【解析】
根據(jù)利用頻率估計概率得到摸到黃球的概率為1%,然后根據(jù)概率公式計算n的值.【詳解】解:根據(jù)題意得=1%,解得n=1,所以這個不透明的盒子里大約有1個除顏色外其他完全相同的小球.故答案為1.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.當實驗的所有可能結果不是有限個或結果個數(shù)很多,或各種可能結果發(fā)生的可能性不相等時,一般通過統(tǒng)計頻率來估計概率.三、解答題(共7小題,滿分69分)18、(1)10;(2).【解析】
(1)先證出∠C=∠D=90°,再根據(jù)∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據(jù)△OCP與△PDA的面積比為1:4,得出CP=AD=4,設OP=x,則CO=8﹣x,由勾股定理得x2=(8﹣x)2+42,求出x,最后根據(jù)AB=2OP即可求出邊AB的長;(2)作MQ∥AN,交PB于點Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的結論求出PB=,最后代入EF=PB即可得出線段EF的長度不變【詳解】(1)如圖1,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折疊可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP與△PDA的面積比為1:4,∴,∴CP=AD=4設OP=x,則CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴邊CD的長為10;(2)作MQ∥AN,交PB于點Q,如圖2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,∴△MFQ≌△NFB.∴QF=FB,∴EF=EQ+QF=(PQ+QB)=PB,由(1)中的結論可得:PC=4,BC=8,∠C=90°,∴PB=,∴EF=PB=2,∴在(1)的條件下,當點M、N在移動過程中,線段EF的長度不變,它的長度為2.【點睛】本題考查了相似三角形的判定與性質、全等三角形的判定與性質、勾股定理、等腰三角形的性質,關鍵是做出輔助線,找出全等和相似的三角形19、(1)-3;(2).【解析】分析:(1)代入30°角的余弦函數(shù)值,結合零指數(shù)冪、負整數(shù)指數(shù)冪的意義及二次根式的相關運算法則計算即可;(2)按照解一元一次不等式組的一般步驟解答,并把解集規(guī)范的表示到數(shù)軸上即可.(1)原式===-3.(2)解不等式①得:,解不等式②得:,∴不等式組的解集為:不等式組的解集在數(shù)軸上表示:點睛:熟記零指數(shù)冪的意義:,(,為正整數(shù))即30°角的余弦函數(shù)值是本題解題的關鍵.20、(1)詳見解析;(2)10.【解析】
①只需證明兩對對應角分別相等可得兩個三角形相似;故.
②根據(jù)相似三角形的性質求出PC長以及AP與OP的關系,然后在Rt△PCO中運用勾股定理求出OP長,從而求出AB長.【詳解】①∵四邊形ABCD是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.由折疊可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.∴∠APO=90°.∴∠APD=90°?∠CPO=∠POC.∵∠D=∠C,∠APD=∠POC.∴△OCP∽△PDA.∴.②∵△OCP與△PDA的面積比為1:4,∴OCPD=OPPA=CPDA=14??√=12.∴PD=2OC,PA=2OP,DA=2CP.∵AD=8,∴CP=4,BC=8.設OP=x,則OB=x,CO=8?x.在△PCO中,∵∠C=90°,CP=4,OP=x,CO=8?x,∴x2=(8?x)2+42.解得:x=5.∴AB=AP=2OP=10.∴邊AB的長為10.【點睛】本題考查了相似三角形的判定與性質以及翻轉變換,解題的關鍵是熟練的掌握相似三角形與翻轉變換的相關知識.21、(1)反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=﹣x+1.(2)2.【解析】
(1)根據(jù)反比例函數(shù)y2=的圖象過點A(2,3),利用待定系數(shù)法求出m,進而得出B點坐標,然后利用待定系數(shù)法求出一次函數(shù)解析式;(2)設直線y1=kx+b與x軸交于C,求出C點坐標,根據(jù)S△AOB=S△AOC﹣S△BOC,列式計算即可.【詳解】(1)∵反比例函數(shù)y2=的圖象過A(2,3),B(6,n)兩點,∴m=2×3=6n,∴m=6,n=1,∴反比例函數(shù)的解析式為y=,B的坐標是(6,1).把A(2,3)、B(6,1)代入y1=kx+b,得:,解得:,∴一次函數(shù)的解析式為y=﹣x+1.(2)如圖,設直線y=﹣x+1與x軸交于C,則C(2,0).S△AOB=S△AOC﹣S△BOC=×2×3﹣×2×1=12﹣1=2.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)、一次函數(shù)解析式以及求三角形面積等知識,根據(jù)已知得出B點坐標以及得出S△AOB=S△AOC﹣S△BOC是解題的關鍵.22、【解析】
直接利用絕對值的性質以及特殊角的三角函數(shù)值、負整數(shù)指數(shù)冪的性質化簡,進而求出答案.【詳解】原式.【點睛】考核知識點:三角函數(shù)混合運算.正確計算是關鍵.23、(1)4﹣5;﹣<x≤2,在數(shù)軸上表示見解析【解析】
(1)此題涉及乘方、特殊角的三角函數(shù)、負整數(shù)指數(shù)冪和二次根式的化簡,首先針對各知識點進行計算,再計算實數(shù)的加減即可;(2)首先解出兩個不等式的解集,再根據(jù)大小小大中間找確定不等式組的解集.【詳解】解:(1)原式=4+2×﹣2×3=4+﹣6=4﹣5;(2),解①得:x>﹣,解②得:x≤2,不等式組的解集為:﹣<x≤2,在數(shù)軸上表示為:.【點睛】此題主要考查了解一元一次不等式組,以實數(shù)的運算,關鍵是正確確定兩個不等式的解集,掌握特殊角的三角函數(shù)值.24、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P點坐標(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).【解析】
(1)將A,B兩點坐標代入解析式,求出b,c值,即可得到拋物線解析式;(2)先根據(jù)解析式求出C點坐標,及頂點E的坐標,設點D的坐標為(0,m),作EF⊥y軸于點F,利用勾股定理表示出DC,DE的長.再建立相等關系式求出m值,進而求出D點坐標;(3)先根據(jù)邊角邊證明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后當以C、D、P為頂點的三角形與△DOC相似時,根據(jù)對應邊不同進行分類討論:①當OC與CD是對應邊時,有比例式,能求出DP的值,又因為DE=DC,所以過點P作PG⊥y軸于點G,利用平行線分線段成比例定理即可求出DG,PG的長度,根據(jù)點P在點D的左邊和右邊,得到符合條件的兩個P點坐標;②當OC與DP是對應邊時,有比例式,易求出DP,仍過點P作PG⊥y軸于點G,利用比例式求出DG,PG的長度,然后根據(jù)點P在點D的左邊和右邊,得到符合條件的兩個P點坐標;這樣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鐵路道口減速帶安裝合同
- 建筑工程效果圖設計單位勞動合同
- 薪酬調整與員工士氣
- 環(huán)保材料幼兒園施工合同
- 教師團隊招聘合同樣本
- 制藥企業(yè)合同工管理指導
- 橋梁擴建土石方開挖施工合同
- 港口建設施工合同模板
- 建筑智能化弱電工程合同模板
- 熱帶雨林草坪工程合同
- JGT366-2012 外墻保溫用錨栓
- 醫(yī)院網(wǎng)絡安全培訓
- 機械工程測試技術課后習題
- 第五章空間分析原理與方法
- 2023上海市歷史七年級上冊期末試卷含答案
- 2024年內(nèi)蒙古電力集團招聘筆試參考題庫含答案解析
- 麻醉藥相關項目營銷策略方案
- 2023年自動化項目經(jīng)理年度總結及下一年計劃
- 冬季山區(qū)行車安全
- 教聯(lián)體經(jīng)驗交流材料
- JC-T 940-2004 玻璃纖維增強水泥 (GRC)裝飾制品
評論
0/150
提交評論