版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
云南省昆明市嵩明一中2024-2025學(xué)年高三下學(xué)期4月調(diào)研考試數(shù)學(xué)試題試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為非零向量,“”為“”的()A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件2.已知函數(shù)的圖象如圖所示,則可以為()A. B. C. D.3.已知,若則實數(shù)的取值范圍是()A. B. C. D.4.已知雙曲線的一條漸近線經(jīng)過圓的圓心,則雙曲線的離心率為()A. B. C. D.25.在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點的坐標(biāo)為()A. B. C. D.6.如圖所示,已知雙曲線的右焦點為,雙曲線的右支上一點,它關(guān)于原點的對稱點為,滿足,且,則雙曲線的離心率是().A. B. C. D.7.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.28.若為過橢圓中心的弦,為橢圓的焦點,則△面積的最大值為()A.20 B.30 C.50 D.609.設(shè),點,,,,設(shè)對一切都有不等式成立,則正整數(shù)的最小值為()A. B. C. D.10.過拋物線的焦點且與的對稱軸垂直的直線與交于,兩點,,為的準(zhǔn)線上的一點,則的面積為()A.1 B.2 C.4 D.811.一個空間幾何體的正視圖是長為4,寬為的長方形,側(cè)視圖是邊長為2的等邊三角形,俯視圖如圖所示,則該幾何體的體積為()A. B. C. D.12.已知是定義在上的奇函數(shù),且當(dāng)時,.若,則的解集是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,那么______.14.已知,若,則a的取值范圍是______.15.內(nèi)角,,的對邊分別為,,,若,則__________.16.已知,,且,則的最小值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)(為自然對數(shù)的底數(shù))時,求函數(shù)的極值;(2)為的導(dǎo)函數(shù),當(dāng),時,求證:.18.(12分)設(shè)函數(shù).(1)當(dāng)時,求不等式的解集;(2)若不等式恒成立,求實數(shù)a的取值范圍.19.(12分)一張邊長為的正方形薄鋁板(圖甲),點,分別在,上,且(單位:).現(xiàn)將該薄鋁板沿裁開,再將沿折疊,沿折疊,使,重合,且重合于點,制作成一個無蓋的三棱錐形容器(圖乙),記該容器的容積為(單位:),(注:薄鋁板的厚度忽略不計)(1)若裁開的三角形薄鋁板恰好是該容器的蓋,求,的值;(2)試確定的值,使得無蓋三棱錐容器的容積最大.20.(12分)已知函數(shù).(1)當(dāng)時,解不等式;(2)設(shè)不等式的解集為,若,求實數(shù)的取值范圍.21.(12分)在直角坐標(biāo)系xOy中,直線的參數(shù)方程為(t為參數(shù),).以坐標(biāo)原點為極點,x軸的非負半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.(l)求直線的普通方程和曲線C的直角坐標(biāo)方程:(2)若直線與曲線C相交于A,B兩點,且.求直線的方程.22.(10分)已知點、分別在軸、軸上運動,,.(1)求點的軌跡的方程;(2)過點且斜率存在的直線與曲線交于、兩點,,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由數(shù)量積的定義可得,為實數(shù),則由可得,根據(jù)共線的性質(zhì),可判斷;再根據(jù)判斷,由等價法即可判斷兩命題的關(guān)系.【詳解】若成立,則,則向量與的方向相同,且,從而,所以;若,則向量與的方向相同,且,從而,所以.所以“”為“”的充分必要條件.故選:B本題考查充分條件和必要條件的判定,考查相等向量的判定,考查向量的模、數(shù)量積的應(yīng)用.2.A【解析】
根據(jù)圖象可知,函數(shù)為奇函數(shù),以及函數(shù)在上單調(diào)遞增,且有一個零點,即可對選項逐個驗證即可得出.【詳解】首先對4個選項進行奇偶性判斷,可知,為偶函數(shù),不符合題意,排除B;其次,在剩下的3個選項,對其在上的零點個數(shù)進行判斷,在上無零點,不符合題意,排除D;然后,對剩下的2個選項,進行單調(diào)性判斷,在上單調(diào)遞減,不符合題意,排除C.故選:A.本題主要考查圖象的識別和函數(shù)性質(zhì)的判斷,意在考查學(xué)生的直觀想象能力和邏輯推理能力,屬于容易題.3.C【解析】
根據(jù),得到有解,則,得,,得到,再根據(jù),有,即,可化為,根據(jù),則的解集包含求解,【詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C本題主要考查一元二次不等式的解法及集合的關(guān)系的應(yīng)用,還考查了運算求解的能力,屬于中檔題,4.B【解析】
求出圓心,代入漸近線方程,找到的關(guān)系,即可求解.【詳解】解:,一條漸近線,故選:B利用的關(guān)系求雙曲線的離心率,是基礎(chǔ)題.5.C【解析】
利用復(fù)數(shù)的運算法則、幾何意義即可得出.【詳解】解:復(fù)數(shù)i(2+i)=2i﹣1對應(yīng)的點的坐標(biāo)為(﹣1,2),故選:C本題考查了復(fù)數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.6.C【解析】
易得,,又,平方計算即可得到答案.【詳解】設(shè)雙曲線C的左焦點為E,易得為平行四邊形,所以,又,故,,,所以,即,故離心率為.故選:C.本題考查求雙曲線離心率的問題,關(guān)鍵是建立的方程或不等關(guān)系,是一道中檔題.7.B【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點,再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時,有最大值為,即,故..當(dāng),即時等號成立.故選:.本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.8.D【解析】
先設(shè)A點的坐標(biāo)為,根據(jù)對稱性可得,在表示出面積,由圖象遏制,當(dāng)點A在橢圓的頂點時,此時面積最大,再結(jié)合橢圓的標(biāo)準(zhǔn)方程,即可求解.【詳解】由題意,設(shè)A點的坐標(biāo)為,根據(jù)對稱性可得,則的面積為,當(dāng)最大時,的面積最大,由圖象可知,當(dāng)點A在橢圓的上下頂點時,此時的面積最大,又由,可得橢圓的上下頂點坐標(biāo)為,所以的面積的最大值為.故選:D.本題主要考查了橢圓的標(biāo)準(zhǔn)方程及簡單的幾何性質(zhì),以及三角形面積公式的應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及化歸與轉(zhuǎn)化思想的應(yīng)用.9.A【解析】
先求得,再求得左邊的范圍,只需,利用單調(diào)性解得t的范圍.【詳解】由題意知sin,∴,∴,隨n的增大而增大,∴,∴,即,又f(t)=在t上單增,f(2)=-1<0,f(3)=2>0,∴正整數(shù)的最小值為3.本題考查了數(shù)列的通項及求和問題,考查了數(shù)列的單調(diào)性及不等式的解法,考查了轉(zhuǎn)化思想,屬于中檔題.10.C【解析】
設(shè)拋物線的解析式,得焦點為,對稱軸為軸,準(zhǔn)線為,這樣可設(shè)點坐標(biāo)為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設(shè)拋物線的解析式,則焦點為,對稱軸為軸,準(zhǔn)線為,∵直線經(jīng)過拋物線的焦點,,是與的交點,又軸,∴可設(shè)點坐標(biāo)為,代入,解得,又∵點在準(zhǔn)線上,設(shè)過點的的垂線與交于點,,∴.故應(yīng)選C.本題考查拋物線的性質(zhì),解題時只要設(shè)出拋物線的標(biāo)準(zhǔn)方程,就能得出點坐標(biāo),從而求得參數(shù)的值.本題難度一般.11.B【解析】
由三視圖確定原幾何體是正三棱柱,由此可求得體積.【詳解】由題意原幾何體是正三棱柱,.故選:B.本題考查三視圖,考查棱柱的體積.解題關(guān)鍵是由三視圖不愿出原幾何體.12.B【解析】
利用函數(shù)奇偶性可求得在時的解析式和,進而構(gòu)造出不等式求得結(jié)果.【詳解】為定義在上的奇函數(shù),.當(dāng)時,,,為奇函數(shù),,由得:或;綜上所述:若,則的解集為.故選:.本題考查函數(shù)奇偶性的應(yīng)用,涉及到利用函數(shù)奇偶性求解對稱區(qū)間的解析式;易錯點是忽略奇函數(shù)在處有意義時,的情況.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由已知利用誘導(dǎo)公式可求,進而根據(jù)同角三角函數(shù)基本關(guān)系即可求解.【詳解】∵,∴,,∴.故答案為:.本小題主要考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系式,屬于基礎(chǔ)題.14.【解析】
函數(shù)等價為,由二次函數(shù)的單調(diào)性可得在R上遞增,即為,可得a的不等式,解不等式即可得到所求范圍.【詳解】,等價為,且時,遞增,時,遞增,且,在處函數(shù)連續(xù),可得在R上遞增,即為,可得,解得,即a的取值范圍是.故答案為:.本題考查分段函數(shù)的單調(diào)性的判斷和運用:解不等式,考查轉(zhuǎn)化思想和運算能力,屬于中檔題.15.【解析】∵,∴,即,∴,∴.16.1【解析】
先將前兩項利用基本不等式去掉,,再處理只含的算式即可.【詳解】解:,因為,所以,所以,當(dāng)且僅當(dāng),,時等號成立,故答案為:1.本題主要考查基本不等式的應(yīng)用,但是由于有3個變量,導(dǎo)致該題不易找到思路,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)極大值,極小值;(2)詳見解析.【解析】
首先確定函數(shù)的定義域和;(1)當(dāng)時,根據(jù)的正負可確定單調(diào)性,進而確定極值點,代入可求得極值;(2)通過分析法可將問題轉(zhuǎn)化為證明,設(shè),令,利用導(dǎo)數(shù)可證得,進而得到結(jié)論.【詳解】由題意得:定義域為,,(1)當(dāng)時,,當(dāng)和時,;當(dāng)時,,在,上單調(diào)遞增,在上單調(diào)遞減,極大值為,極小值為.(2)要證:,即證:,即證:,化簡可得:.,,即證:,設(shè),令,則,在上單調(diào)遞增,,則由,從而有:.本題考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,涉及到函數(shù)極值的求解、利用導(dǎo)數(shù)證明不等式的問題;本題不等式證明的關(guān)鍵是能夠?qū)⒍鄠€變量的問題轉(zhuǎn)化為一個變量的問題,通過構(gòu)造函數(shù)的方式將問題轉(zhuǎn)化為函數(shù)最值的求解問題.18.(1)(2)【解析】
(1)利用分段討論法去掉絕對值,結(jié)合圖象,從而求得不等式的解集;(2)求出函數(shù)的最小值,把問題化為,從而求得的取值范圍.【詳解】(1)當(dāng)時,則所以不等式的解集為.(2)等價于,而,故等價于,所以或,即或,所以實數(shù)a的取值范圍為.本題考查含有絕對值的不等式解法、不等式恒成立問題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,難度一般.19.(1),;(2)當(dāng)值為時,無蓋三棱錐容器的容積最大.【解析】
(1)由已知求得,求得三角形的面積,再由已知得到平面,代入三棱錐體積公式求的值;(2)由題意知,在等腰三角形中,,則,,寫出三角形面積,求其平方導(dǎo)數(shù)的最值,則答案可求.【詳解】解:(1)由題意,為等腰直角三角形,又,,恰好是該零件的蓋,,則,由圖甲知,,,則在圖乙中,,,,又,平面,平面,;(2)由題意知,在等腰三角形中,,則,,.令,,,.可得:當(dāng)時,,當(dāng),時,,當(dāng)時,有最大值.由(1)知,平面,該三棱錐容積的最大值為,且.當(dāng)時,取得最大值,無蓋三棱錐容器的容積最大.答:當(dāng)值為時,無蓋三棱錐容器的容積最大.本題考查棱錐體積的求法,考查空間想象能力與思維能力,訓(xùn)練了利用導(dǎo)數(shù)求最值,屬于中檔題.20.(1)或;(2)【解析】
(1)使用零點分段法,討論分段的取值范圍,然后取它們的并集,可得結(jié)果.(2)利用等價轉(zhuǎn)化的思想,可得不等式在恒成立,然后解出解集,根據(jù)集合間的包含關(guān)系,可得結(jié)果.【詳解】(1)當(dāng)時,原不等式可化為.①當(dāng)時,則,所以;②當(dāng)時,則,所以;⑧當(dāng)時,則,所以.綜上所述:當(dāng)時,不等式的解集為或.(2)由,則,由題可知:在恒成立,所以,即,即,所以故所求實數(shù)的取值范圍是.本題考查零點分段求解含絕對值不等式,熟練使用分類討論的方法,以及知識的交叉應(yīng)用,同時掌握等價轉(zhuǎn)化的思想,屬中檔題.21.(1)見解析(2)【解析】
(1)將消去參數(shù)t可得直線的普通方程,利用x=ρcosθ,可將極坐標(biāo)方程轉(zhuǎn)為直角坐標(biāo)方程.(2)利用直線被圓截得的弦長公式計算可得答案.【詳解】(1)由消去參數(shù)t得(),由得曲線C的直角坐標(biāo)方程為:(2)由得,圓心為(1,0),半徑為2,圓心到直線的距離為,∴,即,整理得,∵,∴,,,所以直線l的方程為:.本題考查參數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《縣支中心資源獲取》課件
- 法理學(xué)第七章法的要素
- 世紀(jì)網(wǎng)通-中繼網(wǎng)關(guān)-x6-2.1技術(shù)規(guī)格及功能說明
- TCL王牌美之彩系列彩電農(nóng)村市場整合推廣傳播手冊
- 2024餐飲規(guī)章制度
- 《廉政從政專題黨課》課件
- GBT-氣相色譜-質(zhì)譜法測定沉積物和原油中生物標(biāo)志物編制說明
- 2024水庫工程風(fēng)險防范與應(yīng)急管理合同范本3篇
- 2024無錫個人房產(chǎn)買賣房產(chǎn)證辦理合同3篇
- 2024房屋租賃押金合同2篇
- 2025版國家開放大學(xué)法律事務(wù)專科《民法學(xué)(2)》期末紙質(zhì)考試案例分析題庫
- GB/T 44713-2024節(jié)地生態(tài)安葬服務(wù)指南
- 2024年形勢與政策 第一講《讀懂中國式現(xiàn)代化》
- 一年級家長會課件2024-2025學(xué)年
- 情侶防出軌合同模板
- 2024-2025學(xué)年蘇教版四年級上冊期末自主測試數(shù)學(xué)試卷(一)(含答案解析)
- 2024公安機關(guān)人民警察高級執(zhí)法資格考試題及答案
- 2023-2024學(xué)年云南省昆明市五華區(qū)八年級(上)期末物理試卷
- 陜西省渭南市2023-2024學(xué)年七年級上學(xué)期期末考試數(shù)學(xué)試題(含答案)2
- 廢棄催化劑中貴金屬的回收
- 期末 (試題) -2024-2025學(xué)年譯林版(三起)(2024)英語三年級上冊
評論
0/150
提交評論