版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行下面的程序框圖,則輸出的值為()A. B. C. D.2.已知函數(shù).若存在實數(shù),且,使得,則實數(shù)a的取值范圍為()A. B. C. D.3.若復(fù)數(shù)是純虛數(shù),則實數(shù)的值為()A.或 B. C. D.或4.已知函數(shù)的圖像上有且僅有四個不同的點關(guān)于直線的對稱點在的圖像上,則實數(shù)的取值范圍是()A. B. C. D.5.下列不等式成立的是()A. B. C. D.6.若集合,,則A. B. C. D.7.若函數(shù)在時取得最小值,則()A. B. C. D.8.如圖,這是某校高三年級甲、乙兩班在上學(xué)期的5次數(shù)學(xué)測試的班級平均分的莖葉圖,則下列說法不正確的是()A.甲班的數(shù)學(xué)成績平均分的平均水平高于乙班B.甲班的數(shù)學(xué)成績的平均分比乙班穩(wěn)定C.甲班的數(shù)學(xué)成績平均分的中位數(shù)高于乙班D.甲、乙兩班這5次數(shù)學(xué)測試的總平均分是1039.已知是平面內(nèi)互不相等的兩個非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.10.已知定義在上的函數(shù),若函數(shù)為偶函數(shù),且對任意,,都有,若,則實數(shù)的取值范圍是()A. B. C. D.11.復(fù)數(shù)的實部與虛部相等,其中為虛部單位,則實數(shù)()A.3 B. C. D.12.2019年某校迎國慶70周年歌詠比賽中,甲乙兩個合唱隊每場比賽得分的莖葉圖如圖所示(以十位數(shù)字為莖,個位數(shù)字為葉).若甲隊得分的中位數(shù)是86,乙隊得分的平均數(shù)是88,則()A.170 B.10 C.172 D.12二、填空題:本題共4小題,每小題5分,共20分。13.以,為圓心的兩圓均過,與軸正半軸分別交于,,且滿足,則點的軌跡方程為_________.14.已知(且)有最小值,且最小值不小于1,則的取值范圍為__________.15.《九章算術(shù)》中記載了“今有共買豕,人出一百,盈一百;人出九十,適足。問人數(shù)、豕價各幾何?”.其意思是“若干個人合買一頭豬,若每人出100,則會剩下100;若每人出90,則不多也不少。問人數(shù)、豬價各多少?”.設(shè)分別為人數(shù)、豬價,則___,___.16.已知非零向量,滿足,且,則與的夾角為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知與有兩個不同的交點,其橫坐標(biāo)分別為().(1)求實數(shù)的取值范圍;(2)求證:.18.(12分)已知橢圓C:(a>b>0)的兩個焦點分別為F1(-,0)、F2(,0).點M(1,0)與橢圓短軸的兩個端點的連線相互垂直.(1)求橢圓C的方程;(2)已知點N的坐標(biāo)為(3,2),點P的坐標(biāo)為(m,n)(m≠3).過點M任作直線l與橢圓C相交于A、B兩點,設(shè)直線AN、NP、BN的斜率分別為k1、k2、k3,若k1+k3=2k2,試求m,n滿足的關(guān)系式.19.(12分)若函數(shù)在處有極值,且,則稱為函數(shù)的“F點”.(1)設(shè)函數(shù)().①當(dāng)時,求函數(shù)的極值;②若函數(shù)存在“F點”,求k的值;(2)已知函數(shù)(a,b,,)存在兩個不相等的“F點”,,且,求a的取值范圍.20.(12分)已知曲線:和:(為參數(shù)).以原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,且兩種坐標(biāo)系中取相同的長度單位.(1)求曲線的直角坐標(biāo)方程和的方程化為極坐標(biāo)方程;(2)設(shè)與,軸交于,兩點,且線段的中點為.若射線與,交于,兩點,求,兩點間的距離.21.(12分)已知拋物線:,點為拋物線的焦點,焦點到直線的距離為,焦點到拋物線的準(zhǔn)線的距離為,且.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)若軸上存在點,過點的直線與拋物線相交于、兩點,且為定值,求點的坐標(biāo).22.(10分)已知函數(shù),.(1)當(dāng)時,求不等式的解集;(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據(jù)框圖,模擬程序運行,即可求出答案.【詳解】運行程序,,
,,,,,結(jié)束循環(huán),故輸出,故選:D.【點睛】本題主要考查了程序框圖,循環(huán)結(jié)構(gòu),條件分支結(jié)構(gòu),屬于中檔題.2.D【解析】
首先對函數(shù)求導(dǎo),利用導(dǎo)數(shù)的符號分析函數(shù)的單調(diào)性和函數(shù)的極值,根據(jù)題意,列出參數(shù)所滿足的不等關(guān)系,求得結(jié)果.【詳解】,令,得,.其單調(diào)性及極值情況如下:x0+0_0+極大值極小值若存在,使得,則(如圖1)或(如圖2).(圖1)(圖2)于是可得,故選:D.【點睛】該題考查的是有關(guān)根據(jù)函數(shù)值的關(guān)系求參數(shù)的取值范圍的問題,涉及到的知識點有利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,畫出圖象數(shù)形結(jié)合,屬于較難題目.3.C【解析】試題分析:因為復(fù)數(shù)是純虛數(shù),所以且,因此注意不要忽視虛部不為零這一隱含條件.考點:純虛數(shù)4.A【解析】
可將問題轉(zhuǎn)化,求直線關(guān)于直線的對稱直線,再分別討論兩函數(shù)的增減性,結(jié)合函數(shù)圖像,分析臨界點,進一步確定的取值范圍即可【詳解】可求得直線關(guān)于直線的對稱直線為,當(dāng)時,,,當(dāng)時,,則當(dāng)時,,單減,當(dāng)時,,單增;當(dāng)時,,,當(dāng),,當(dāng)時,單減,當(dāng)時,單增;根據(jù)題意畫出函數(shù)大致圖像,如圖:當(dāng)與()相切時,得,解得;當(dāng)與()相切時,滿足,解得,結(jié)合圖像可知,即,故選:A【點睛】本題考查數(shù)形結(jié)合思想求解函數(shù)交點問題,導(dǎo)數(shù)研究函數(shù)增減性,找準(zhǔn)臨界是解題的關(guān)鍵,屬于中檔題5.D【解析】
根據(jù)指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的單調(diào)性和正余弦函數(shù)的圖象可確定各個選項的正誤.【詳解】對于,,,錯誤;對于,在上單調(diào)遞減,,錯誤;對于,,,,錯誤;對于,在上單調(diào)遞增,,正確.故選:.【點睛】本題考查根據(jù)初等函數(shù)的單調(diào)性比較大小的問題;關(guān)鍵是熟練掌握正余弦函數(shù)圖象、指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)的單調(diào)性.6.C【解析】
解一元次二次不等式得或,利用集合的交集運算求得.【詳解】因為或,,所以,故選C.【點睛】本題考查集合的交運算,屬于容易題.7.D【解析】
利用輔助角公式化簡的解析式,再根據(jù)正弦函數(shù)的最值,求得在函數(shù)取得最小值時的值.【詳解】解:,其中,,,故當(dāng),即時,函數(shù)取最小值,所以,故選:D【點睛】本題主要考查輔助角公式,正弦函數(shù)的最值的應(yīng)用,屬于基礎(chǔ)題.8.D【解析】
計算兩班的平均值,中位數(shù),方差得到正確,兩班人數(shù)不知道,所以兩班的總平均分無法計算,錯誤,得到答案.【詳解】由題意可得甲班的平均分是104,中位數(shù)是103,方差是26.4;乙班的平均分是102,中位數(shù)是101,方差是37.6,則A,B,C正確.因為甲、乙兩班的人數(shù)不知道,所以兩班的總平均分無法計算,故D錯誤.故選:.【點睛】本題考查了莖葉圖,平均值,中位數(shù),方差,意在考查學(xué)生的計算能力和應(yīng)用能力.9.C【解析】試題分析:如下圖所示,則,因為與的夾角為,即,所以,設(shè),則,在三角形中,由正弦定理得,所以,所以,故選C.考點:1.向量加減法的幾何意義;2.正弦定理;3.正弦函數(shù)性質(zhì).10.A【解析】
根據(jù)題意,分析可得函數(shù)的圖象關(guān)于對稱且在上為減函數(shù),則不等式等價于,解得的取值范圍,即可得答案.【詳解】解:因為函數(shù)為偶函數(shù),所以函數(shù)的圖象關(guān)于對稱,因為對任意,,都有,所以函數(shù)在上為減函數(shù),則,解得:.即實數(shù)的取值范圍是.故選:A.【點睛】本題考查函數(shù)的對稱性與單調(diào)性的綜合應(yīng)用,涉及不等式的解法,屬于綜合題.11.B【解析】
利用乘法運算化簡復(fù)數(shù)即可得到答案.【詳解】由已知,,所以,解得.故選:B【點睛】本題考查復(fù)數(shù)的概念及復(fù)數(shù)的乘法運算,考查學(xué)生的基本計算能力,是一道容易題.12.D【解析】
中位數(shù)指一串?dāng)?shù)據(jù)按從小(大)到大(?。┡帕泻螅幵谧钪虚g的那個數(shù),平均數(shù)指一串?dāng)?shù)據(jù)的算術(shù)平均數(shù).【詳解】由莖葉圖知,甲的中位數(shù)為,故;乙的平均數(shù)為,解得,所以.故選:D.【點睛】本題考查莖葉圖的應(yīng)用,涉及到中位數(shù)、平均數(shù)的知識,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)圓的性質(zhì)可知在線段的垂直平分線上,由此得到,同理可得,由對數(shù)運算法則可知,從而化簡得到,由此確定軌跡方程.【詳解】,,和的中點坐標(biāo)為,且在線段的垂直平分線上,,即,同理可得:,,,點的軌跡方程為.故答案為:.【點睛】本題考查動點軌跡方程的求解問題,關(guān)鍵是能夠利用圓的性質(zhì)和對數(shù)運算法則構(gòu)造出滿足的方程,由此得到結(jié)果.14.【解析】
真數(shù)有最小值,根據(jù)已知可得的范圍,求出函數(shù)的最小值,建立關(guān)于的不等量關(guān)系,求解即可.【詳解】,且(且)有最小值,,的取值范圍為.故答案為:.【點睛】本題考查對數(shù)型復(fù)合函數(shù)的性質(zhì),熟練掌握基本初等函數(shù)的性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.15.10900【解析】
由題意列出方程組,求解即可.【詳解】由題意可得,解得.故答案為10900【點睛】本題主要考查二元一次方程組的解法,用消元法來求解即可,屬于基礎(chǔ)題型.16.(或?qū)懗桑窘馕觥?/p>
設(shè)與的夾角為,通過,可得,化簡整理可求出,從而得到答案.【詳解】設(shè)與的夾角為可得,故,將代入可得得到,于是與的夾角為.故答案為:.【點睛】本題主要考查向量的數(shù)量積運算,向量垂直轉(zhuǎn)化為數(shù)量積為0是解決本題的關(guān)鍵,意在考查學(xué)生的轉(zhuǎn)化能力,分析能力及計算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析【解析】
(1)利用導(dǎo)數(shù)研究的單調(diào)性,分析函數(shù)性質(zhì),數(shù)形結(jié)合,即得解;(2)構(gòu)造函數(shù),可證得:,,分析直線,與從左到右交點的橫坐標(biāo),在,處的切線即得解.【詳解】(1)設(shè)函數(shù),,令,令故在單調(diào)遞減,在單調(diào)遞增,∴,∵時;;時.(2)①過點,的直線為,則令,,,.②過點,的直線為,則,在上單調(diào)遞增.③設(shè)直線,與從左到右交點的橫坐標(biāo)依次為,,由圖知.④在,處的切線分別為,,同理可以證得,.記直線與兩切線和從左到右交點的橫坐標(biāo)依次為,.【點睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合,考查了學(xué)生數(shù)形結(jié)合,綜合分析,轉(zhuǎn)化劃歸,邏輯推理,數(shù)學(xué)運算的能力,屬于較難題.18.(1);(2)m-n-1=0【解析】試題分析:(1)利用M與短軸端點構(gòu)成等腰直角三角形,可求得b的值,進而得到橢圓方程;(2)設(shè)出過M的直線l的方程,將l與橢圓C聯(lián)立,得到兩交點坐標(biāo)關(guān)系,然后將k1+k3表示為直線l斜率的關(guān)系式,化簡后得k1+k3=2,于是可得m,n的關(guān)系式.試題解析:(1)由題意,c=,b=1,所以a=故橢圓C的方程為(2)①當(dāng)直線l的斜率不存在時,方程為x=1,代入橢圓得,y=±不妨設(shè)A(1,),B(1,-)因為k1+k3==2又k1+k3=2k2,所以k2=1所以m,n的關(guān)系式為=1,即m-n-1=0②當(dāng)直線l的斜率存在時,設(shè)l的方程為y=k(x-1)將y=k(x-1)代入,整理得:(3k2+1)x2-6k2x+3k2-3=0設(shè)A(x1,y1),B(x2,y2),則又y1=k(x1-1),y2=k(x2-1)所以k1+k3======2所以2k2=2,所以k2==1所以m,n的關(guān)系式為m-n-1=0綜上所述,m,n的關(guān)系式為m-n-1=0.考點:橢圓標(biāo)準(zhǔn)方程,直線與橢圓位置關(guān)系,19.(1)①極小值為1,無極大值.②實數(shù)k的值為1.(2)【解析】
(1)①將代入可得,求導(dǎo)討論函數(shù)單調(diào)性,即得極值;②設(shè)是函數(shù)的一個“F點”(),即是的零點,那么由導(dǎo)數(shù)可知,且,可得,根據(jù)可得,設(shè),由的單調(diào)性可得,即得.(2)方法一:先求的導(dǎo)數(shù),存在兩個不相等的“F點”,,可以由和韋達定理表示出,的關(guān)系,再由,可得的關(guān)系式,根據(jù)已知解即得.方法二:由函數(shù)存在不相等的兩個“F點”和,可知,是關(guān)于x的方程組的兩個相異實數(shù)根,由得,分兩種情況:是函數(shù)一個“F點”,不是函數(shù)一個“F點”,進行討論即得.【詳解】解:(1)①當(dāng)時,(),則有(),令得,列表如下:x10極小值故函數(shù)在處取得極小值,極小值為1,無極大值.②設(shè)是函數(shù)的一個“F點”().(),是函數(shù)的零點.,由,得,,由,得,即.設(shè),則,所以函數(shù)在上單調(diào)增,注意到,所以方程存在唯一實根1,所以,得,根據(jù)①知,時,是函數(shù)的極小值點,所以1是函數(shù)的“F點”.綜上,得實數(shù)k的值為1.(2)由(a,b,,),可得().又函數(shù)存在不相等的兩個“F點”和,,是關(guān)于x的方程()的兩個相異實數(shù)根.又,,,即,從而,,即..,,解得.所以,實數(shù)a的取值范圍為.(2)(解法2)因為(a,b,,)所以().又因為函數(shù)存在不相等的兩個“F點”和,所以,是關(guān)于x的方程組的兩個相異實數(shù)根.由得,.(2.1)當(dāng)是函數(shù)一個“F點”時,且.所以,即.又,所以,所以.又,所以.(2.2)當(dāng)不是函數(shù)一個“F點”時,則,是關(guān)于x的方程的兩個相異實數(shù)根.又,所以得所以,得.所以,得.綜合(2.1)(2.2),實數(shù)a的取值范圍為.【點睛】本題考查利用導(dǎo)數(shù)求函數(shù)極值,以及由函數(shù)的極值求參數(shù)值等,是一道關(guān)于函數(shù)導(dǎo)數(shù)的綜合性題目,考查學(xué)生的分析和數(shù)學(xué)運算能力,有一定難度.20.(1),;(2)1.【解析】
(1)利用正弦的和角公式,結(jié)合極坐標(biāo)化為直角坐標(biāo)的公式,即可求得曲線的直角坐標(biāo)方程;先寫出曲線的普通方程,再利用公式化簡為極坐標(biāo)即可;(2)先求出的直角坐標(biāo),據(jù)此求得中點的直角坐標(biāo),將其轉(zhuǎn)化為極坐標(biāo),聯(lián)立曲線的極坐標(biāo)方程,即可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度跨境金融結(jié)算服務(wù)合同4篇
- 二零二五年度電子發(fā)票承兌匯票居間業(yè)務(wù)合同3篇
- 擠塑板地板施工方案
- 二零二四年度戰(zhàn)略合作協(xié)議合同標(biāo)的合作領(lǐng)域為新能源
- 根域條狀微集水改土技術(shù)對陜北果園土壤改良效應(yīng)及蘋果生產(chǎn)的影響
- 二零二四年度原材料質(zhì)量問題處理與索賠合同
- 個性化2024補償合同范本詳析版B版
- 四年級數(shù)學(xué)(小數(shù)加減運算)計算題專項練習(xí)與答案匯編
- 太陽耀斑準(zhǔn)周期振蕩與冕環(huán)振蕩的觀測研究
- 2025年度礦產(chǎn)資源勘探與采礦一體化承包合同3篇
- (二統(tǒng))大理州2025屆高中畢業(yè)生第二次復(fù)習(xí)統(tǒng)一檢測 物理試卷(含答案)
- 口腔執(zhí)業(yè)醫(yī)師定期考核試題(資料)帶答案
- 2024人教版高中英語語境記單詞【語境記單詞】新人教版 選擇性必修第2冊
- 能源管理總結(jié)報告
- 充電樁巡查記錄表
- 阻燃材料的阻燃機理建模
- CJT 511-2017 鑄鐵檢查井蓋
- 配電工作組配電網(wǎng)集中型饋線自動化技術(shù)規(guī)范編制說明
- 2024高考物理全國乙卷押題含解析
- 介入科圍手術(shù)期護理
- 青光眼術(shù)后護理課件
評論
0/150
提交評論