深圳市育才中學2025屆高三4月月考試數(shù)學試題含解析_第1頁
深圳市育才中學2025屆高三4月月考試數(shù)學試題含解析_第2頁
深圳市育才中學2025屆高三4月月考試數(shù)學試題含解析_第3頁
深圳市育才中學2025屆高三4月月考試數(shù)學試題含解析_第4頁
深圳市育才中學2025屆高三4月月考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

深圳市育才中學2025屆高三4月月考試數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數(shù)滿足,則(其中為虛數(shù)單位)的最大值為()A.1 B.2 C.3 D.42.某四棱錐的三視圖如圖所示,則該四棱錐的體積為()A. B. C. D.3.已知雙曲線的離心率為,拋物線的焦點坐標為,若,則雙曲線的漸近線方程為()A. B.C. D.4.已知為實數(shù)集,,,則()A. B. C. D.5.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.6.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B.4 C. D.7.設,是方程的兩個不等實數(shù)根,記().下列兩個命題()①數(shù)列的任意一項都是正整數(shù);②數(shù)列存在某一項是5的倍數(shù).A.①正確,②錯誤 B.①錯誤,②正確C.①②都正確 D.①②都錯誤8.在中,,,,若,則實數(shù)()A. B. C. D.9.已知直線與直線則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件10.已知向量,,若,則與夾角的余弦值為()A. B. C. D.11.若各項均為正數(shù)的等比數(shù)列滿足,則公比()A.1 B.2 C.3 D.412.如圖所示,三國時代數(shù)學家在《周脾算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一個內(nèi)角為,若向弦圖內(nèi)隨機拋擲200顆米粒(大小忽略不計,取),則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.20 B.27 C.54 D.64二、填空題:本題共4小題,每小題5分,共20分。13.若,則的展開式中含的項的系數(shù)為_______.14.隨著國力的發(fā)展,人們的生活水平越來越好,我國的人均身高較新中國成立初期有大幅提高.為了掌握學生的體質(zhì)與健康現(xiàn)狀,合理制定學校體育衛(wèi)生工作發(fā)展規(guī)劃,某市進行了一次全市高中男生身高統(tǒng)計調(diào)查,數(shù)據(jù)顯示全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,那么該市身高高于的高中男生人數(shù)大約為__________.15.如圖,在矩形中,為邊的中點,,,分別以、為圓心,為半徑作圓弧、(在線段上).由兩圓弧、及邊所圍成的平面圖形繞直線旋轉(zhuǎn)一周,則所形成的幾何體的體積為.16.某班星期一共八節(jié)課(上午、下午各四節(jié),其中下午最后兩節(jié)為社團活動),排課要求為:語文、數(shù)學、外語、物理、化學各排一節(jié),從生物、歷史、地理、政治四科中選排一節(jié).若數(shù)學必須安排在上午且與外語不相鄰(上午第四節(jié)和下午第一節(jié)不算相鄰),則不同的排法有__________種.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標平面中,已知的頂點,,為平面內(nèi)的動點,且.(1)求動點的軌跡的方程;(2)設過點且不垂直于軸的直線與交于,兩點,點關于軸的對稱點為,證明:直線過軸上的定點.18.(12分)已知函數(shù),.(1)若函數(shù)在上單調(diào)遞減,且函數(shù)在上單調(diào)遞增,求實數(shù)的值;(2)求證:(,且).19.(12分)已知等差數(shù)列的公差,且,,成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.20.(12分)4月23日是“世界讀書日”,某中學開展了一系列的讀書教育活動.學校為了解高三學生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學生只能參加一個讀書小組)學生抽取12名學生參加問卷調(diào)查.各組人數(shù)統(tǒng)計如下:小組甲乙丙丁人數(shù)12969(1)從參加問卷調(diào)查的12名學生中隨機抽取2人,求這2人來自同一個小組的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,用表示抽得甲組學生的人數(shù),求隨機變量的分布列和數(shù)學期望.21.(12分)已知橢圓()的半焦距為,原點到經(jīng)過兩點,的直線的距離為.(Ⅰ)求橢圓的離心率;(Ⅱ)如圖,是圓的一條直徑,若橢圓經(jīng)過,兩點,求橢圓的方程.22.(10分)已知函數(shù).(1)當時,求函數(shù)的值域;(2)的角的對邊分別為且,,求邊上的高的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據(jù)復數(shù)的幾何意義可知復數(shù)對應的點在以原點為圓心,1為半徑的圓上,再根據(jù)復數(shù)的幾何意義即可確定,即可得的最大值.【詳解】由知,復數(shù)對應的點在以原點為圓心,1為半徑的圓上,表示復數(shù)對應的點與點間的距離,又復數(shù)對應的點所在圓的圓心到的距離為1,所以.故選:B本題考查了復數(shù)模的定義及其幾何意義應用,屬于基礎題.2.B【解析】

由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,由此求出四棱錐的體積.【詳解】由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.本題考查了利用三視圖求幾何體體積的問題,是基礎題.3.A【解析】

求出拋物線的焦點坐標,得到雙曲線的離心率,然后求解a,b關系,即可得到雙曲線的漸近線方程.【詳解】拋物線y2=2px(p>0)的焦點坐標為(1,0),則p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以雙曲線的漸近線方程為:y=±.故選:A.本題考查雙曲線的離心率以及雙曲線漸近線方程的求法,涉及拋物線的簡單性質(zhì)的應用.4.C【解析】

求出集合,,,由此能求出.【詳解】為實數(shù)集,,,或,.故選:.本題考查交集、補集的求法,考查交集、補集的性質(zhì)等基礎知識,考查運算求解能力,是基礎題.5.C【解析】

由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,據(jù)此可計算出答案.【詳解】由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,該幾何體的表面積.故選:C本題主要考查了三視圖的知識,幾何體的表面積的計算.由三視圖正確恢復幾何體是解題的關鍵.6.A【解析】

模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的的值,當,,退出循環(huán),輸出結(jié)果.【詳解】程序運行過程如下:,;,;,;,;,;,;,,退出循環(huán),輸出結(jié)果為,故選:A.該題考查的是有關程序框圖的問題,涉及到的知識點有判斷程序框圖輸出結(jié)果,屬于基礎題目.7.A【解析】

利用韋達定理可得,,結(jié)合可推出,再計算出,,從而推出①正確;再利用遞推公式依次計算數(shù)列中的各項,以此判斷②的正誤.【詳解】因為,是方程的兩個不等實數(shù)根,所以,,因為,所以,即當時,數(shù)列中的任一項都等于其前兩項之和,又,,所以,,,以此類推,即可知數(shù)列的任意一項都是正整數(shù),故①正確;若數(shù)列存在某一項是5的倍數(shù),則此項個位數(shù)字應當為0或5,由,,依次計算可知,數(shù)列中各項的個位數(shù)字以1,3,4,7,1,8,9,7,6,3,9,2為周期,故數(shù)列中不存在個位數(shù)字為0或5的項,故②錯誤;故選:A.本題主要考查數(shù)列遞推公式的推導,考查數(shù)列性質(zhì)的應用,考查學生的綜合分析以及計算能力.8.D【解析】

將、用、表示,再代入中計算即可.【詳解】由,知為的重心,所以,又,所以,,所以,.故選:D本題考查平面向量基本定理的應用,涉及到向量的線性運算,是一道中檔題.9.B【解析】

利用充分必要條件的定義可判斷兩個條件之間的關系.【詳解】若,則,故或,當時,直線,直線,此時兩條直線平行;當時,直線,直線,此時兩條直線平行.所以當時,推不出,故“”是“”的不充分條件,當時,可以推出,故“”是“”的必要條件,故選:B.本題考查兩條直線的位置關系以及必要不充分條件的判斷,前者應根據(jù)系數(shù)關系來考慮,后者依據(jù)兩個條件之間的推出關系,本題屬于中檔題.10.B【解析】

直接利用向量的坐標運算得到向量的坐標,利用求得參數(shù)m,再用計算即可.【詳解】依題意,,而,即,解得,則.故選:B.本題考查向量的坐標運算、向量數(shù)量積的應用,考查運算求解能力以及化歸與轉(zhuǎn)化思想.11.C【解析】

由正項等比數(shù)列滿足,即,又,即,運算即可得解.【詳解】解:因為,所以,又,所以,又,解得.故選:C.本題考查了等比數(shù)列基本量的求法,屬基礎題.12.B【解析】

設大正方體的邊長為,從而求得小正方體的邊長為,設落在小正方形內(nèi)的米粒數(shù)大約為,利用概率模擬列方程即可求解?!驹斀狻吭O大正方體的邊長為,則小正方體的邊長為,設落在小正方形內(nèi)的米粒數(shù)大約為,則,解得:故選:B本題主要考查了概率模擬的應用,考查計算能力,屬于基礎題。二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

首先根據(jù)定積分的應用求出的值,進一步利用二項式的展開式的應用求出結(jié)果.【詳解】,根據(jù)二項式展開式通項:,令,解得,所以含的項的系數(shù).故答案為:本題考查定積分,二項式的展開式的應用,主要考查學生的運算求解能力,屬于基礎題.14.3000【解析】

根據(jù)正態(tài)曲線的對稱性求出,進而可求出身高高于的高中男生人數(shù).【詳解】解:全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,則,該市身高高于的高中男生人數(shù)大約為.故答案為:.本題考查正態(tài)曲線的對稱性的應用,是基礎題.15.【解析】由題意,可得所得到的幾何體是由一個圓柱挖去兩個半球而成;其中,圓柱的底面半徑為1,母線長為2;體積為;兩個半球的半徑都為1,則兩個半球的體積為;則所求幾何體的體積為.考點:旋轉(zhuǎn)體的組合體.16.1344【解析】

分四種情況討論即可【詳解】解:數(shù)學排在第一節(jié)時有:數(shù)學排在第二節(jié)時有:數(shù)學排在第三節(jié)時有:數(shù)學排在第四節(jié)時有:所以共有1344種故答案為:1344考查排列、組合的應用,注意分類討論,做到不重不漏;基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)();(2)證明見解析.【解析】

(1)設點,分別用表示、表示和余弦定理表示,將表示為、的方程,再化簡即可;(2)設直線方程代入的軌跡方程,得,設點,,,表示出直線,取,得,即可證明直線過軸上的定點.【詳解】(1)設,由已知,∴,∴(),化簡得點的軌跡的方程為:();(2)由(1)知,過點的直線的斜率為0時與無交點,不合題意故可設直線的方程為:(),代入的方程得:.設,,則,,.∴直線:.令,得.直線過軸上的定點.本題主要考查軌跡方程的求法、余弦定理的應用和利用直線和圓錐曲線的位置關系求定點問題,考查學生的計算能力,屬于中檔題.18.(1)1;(2)見解析【解析】

(1)分別求得與的導函數(shù),由導函數(shù)與單調(diào)性關系即可求得的值;(2)由(1)可知當時,,當時,,因而,構(gòu)造,由對數(shù)運算及不等式放縮可證明,從而不等式可證明.【詳解】(1)∵函數(shù)在上單調(diào)遞減,∴,即在上恒成立,∴,又∵函數(shù)在上單調(diào)遞增,∴,即在上恒成立,,∴綜上可知,.(2)證明:由(1)知,當時,函數(shù)在上為減函數(shù),在上為增函數(shù),而,∴當時,,當時,.∴∴即,∴.本題考查了導數(shù)與函數(shù)單調(diào)性關系,放縮法在證明不等式中的應用,屬于難題.19.(1);(2).【解析】

(1)根據(jù)等比中項性質(zhì)可構(gòu)造方程求得,由等差數(shù)列通項公式可求得結(jié)果;(2)由(1)可得,可知為等比數(shù)列,利用分組求和法,結(jié)合等差和等比數(shù)列求和公式可求得結(jié)果.【詳解】(1)成等比數(shù)列,,即,,解得:,.(2)由(1)得:,,,數(shù)列是首項為,公比為的等比數(shù)列,.本題考查等差數(shù)列通項公式的求解、分組求和法求解數(shù)列的前項和的問題;關鍵是能夠根據(jù)通項公式證得數(shù)列為等比數(shù)列,進而采用分組求和法,結(jié)合等差和等比數(shù)列求和公式求得結(jié)果.20.(1)(2)見解析,【解析】

(1)采用分層抽樣的方法甲組抽取4人,乙組抽取3人,丙組抽取2人,丁組抽取3人,從參加問卷調(diào)查的12名學生中隨機抽取2人,基本事件總數(shù)為,這兩人來自同一小組取法共有,由此可求出所求的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,而甲、丙兩個小組學生分別有4人和2人,所以抽取的兩人中是甲組的學生的人數(shù)的可能取值為0,1,2,分別求出相應的概率,由此能求出隨機變量的分布列和數(shù)學期望.【詳解】(1)由題設易得,問卷調(diào)查從四個小組中抽取的人數(shù)分別為4,3,2,3(人),從參加問卷調(diào)查的12名學生中隨機抽取兩名的取法共有(種),抽取的兩名學生來自同一小組的取法共有(種),所以,抽取的兩名學生來自同一個小組的概率為(2)由(1)知,在參加問卷調(diào)查的12名學生中,來自甲、丙兩小組的學生人數(shù)分別為4人、2人,所以,抽取的兩人中是甲組的學生的人數(shù)的可能取值為0,1,2,因為所以隨機變量的分布列為:012所求的期望為此題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,考查分層抽樣、古典概型、排列組合等知識,考查運算能力,屬于中檔題.21.(Ⅰ);(Ⅱ).【解析】試題分析:(1)依題意,由點到直線的距離公式可得,又有,聯(lián)立可求離心率;(2)由(1)設橢圓方程,再設直線方程,與橢圓方程聯(lián)立,求得,令,可得,即得橢圓方程.試題解析:(Ⅰ)過點的直線方程為,則原點到直線的距離,由,得,解得離心率.(Ⅱ)由(1)知,橢圓的方程為.依題意,圓心是線段的中點,且.易知,不與軸垂直.設

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論