2021-2022學(xué)年固原市重點(diǎn)中學(xué)中考數(shù)學(xué)模擬試題含解析_第1頁
2021-2022學(xué)年固原市重點(diǎn)中學(xué)中考數(shù)學(xué)模擬試題含解析_第2頁
2021-2022學(xué)年固原市重點(diǎn)中學(xué)中考數(shù)學(xué)模擬試題含解析_第3頁
2021-2022學(xué)年固原市重點(diǎn)中學(xué)中考數(shù)學(xué)模擬試題含解析_第4頁
2021-2022學(xué)年固原市重點(diǎn)中學(xué)中考數(shù)學(xué)模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022學(xué)年固原市重點(diǎn)中學(xué)中考數(shù)學(xué)模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一元二次方程的根是()A. B.C. D.2.下列圖形中是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.3.下列計算正確的是()A.2x﹣x=1 B.x2?x3=x6C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y64.鄭州地鐵Ⅰ號線火車站站口分布如圖所示,有A,B,C,D,E五個進(jìn)出口,小明要從這里乘坐地鐵去新鄭機(jī)場,回來后仍從這里出站,則他恰好選擇從同一個口進(jìn)出的概率是()A. B. C. D.5.二次函數(shù)y=x2﹣6x+m的圖象與x軸有兩個交點(diǎn),若其中一個交點(diǎn)的坐標(biāo)為(1,0),則另一個交點(diǎn)的坐標(biāo)為()A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)6.如圖,△ADE繞正方形ABCD的頂點(diǎn)A順時針旋轉(zhuǎn)90°,得△ABF,連接EF交AB于H,有如下五個結(jié)論①AE⊥AF;②EF:AF=:1;③AF2=FH?FE;④∠AFE=∠DAE+∠CFE⑤FB:FC=HB:EC.則正確的結(jié)論有()A.2個 B.3個 C.4個 D.5個7.﹣23的相反數(shù)是()A.﹣8 B.8 C.﹣6 D.68.已知,兩數(shù)在數(shù)軸上對應(yīng)的點(diǎn)如圖所示,下列結(jié)論正確的是()A. B. C. D.9.下列代數(shù)運(yùn)算正確的是()A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3?x2=x510.關(guān)于x的一元二次方程x2﹣2x+k+2=0有實(shí)數(shù)根,則k的取值范圍在數(shù)軸上表示正確的是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,ABCDE是正五邊形,已知AG=1,則FG+JH+CD=_____.12.如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,點(diǎn)M、N分別在線段AC、AB上,將△ANM沿直線MN折疊,使點(diǎn)A的對應(yīng)點(diǎn)D恰好落在線段BC上,當(dāng)△DCM為直角三角形時,折痕MN的長為__.13.函數(shù)y=1x-1的自變量x的取值范圍是14.為選拔一名選手參加全國中學(xué)生游泳錦標(biāo)賽自由泳比賽,我市四名中學(xué)生參加了男子100米自由泳訓(xùn)練,他們成績的平均數(shù)及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29s21.11.11.31.6如果選拔一名學(xué)生去參賽,應(yīng)派_________去.15.如圖,李明從A點(diǎn)出發(fā)沿直線前進(jìn)5米到達(dá)B點(diǎn)后向左旋轉(zhuǎn)的角度為α,再沿直線前進(jìn)5米,到達(dá)點(diǎn)C后,又向左旋轉(zhuǎn)α角度,照這樣走下去,第一次回到出發(fā)地點(diǎn)時,他共走了45米,則每次旋轉(zhuǎn)的角度α為_____.16.如圖,AB是⊙O的直徑,AB=2,點(diǎn)C在⊙O上,∠CAB=30°,D為的中點(diǎn),P是直徑AB上一動點(diǎn),則PC+PD的最小值為________.17.(2017黑龍江省齊齊哈爾市)如圖,在等腰三角形紙片ABC中,AB=AC=10,BC=12,沿底邊BC上的高AD剪成兩個三角形,用這兩個三角形拼成平行四邊形,則這個平行四邊形較長的對角線的長是______.三、解答題(共7小題,滿分69分)18.(10分)(1)計算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化簡,再求值:()+,其中a=﹣2+.19.(5分)如圖,在△ABC中,BC=6,AB=AC,E,F(xiàn)分別為AB,AC上的點(diǎn)(E,F(xiàn)不與A重合),且EF∥BC.將△AEF沿著直線EF向下翻折,得到△A′EF,再展開.(1)請判斷四邊形AEA′F的形狀,并說明理由;(2)當(dāng)四邊形AEA′F是正方形,且面積是△ABC的一半時,求AE的長.20.(8分)已知,如圖1,直線y=x+3與x軸、y軸分別交于A、C兩點(diǎn),點(diǎn)B在x軸上,點(diǎn)B的橫坐標(biāo)為,拋物線經(jīng)過A、B、C三點(diǎn).點(diǎn)D是直線AC上方拋物線上任意一點(diǎn).(1)求拋物線的函數(shù)關(guān)系式;(2)若P為線段AC上一點(diǎn),且S△PCD=2S△PAD,求點(diǎn)P的坐標(biāo);(3)如圖2,連接OD,過點(diǎn)A、C分別作AM⊥OD,CN⊥OD,垂足分別為M、N.當(dāng)AM+CN的值最大時,求點(diǎn)D的坐標(biāo).21.(10分)如圖,在⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點(diǎn)F,在AB的延長線上有點(diǎn)E,且EF=ED.(1)求證:DE是⊙O的切線;(2)若tanA=,探究線段AB和BE之間的數(shù)量關(guān)系,并證明;(3)在(2)的條件下,若OF=1,求圓O的半徑.22.(10分)有一個二次函數(shù)滿足以下條件:①函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)分別為A(1,0),B(x1,y1)(點(diǎn)B在點(diǎn)A的右側(cè));②對稱軸是x=3;③該函數(shù)有最小值是﹣1.(1)請根據(jù)以上信息求出二次函數(shù)表達(dá)式;(1)將該函數(shù)圖象x>x1的部分圖象向下翻折與原圖象未翻折的部分組成圖象“G”,平行于x軸的直線與圖象“G”相交于點(diǎn)C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),結(jié)合畫出的函數(shù)圖象求x3+x4+x5的取值范圍.23.(12分)如圖所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線AE交BC于點(diǎn)E,連接DE.(1)求證:四邊形ABED是菱形;(2)若∠ABC=60°,CE=2BE,試判斷△CDE的形狀,并說明理由.24.(14分)如圖,在平面直角坐標(biāo)系中,將坐標(biāo)原點(diǎn)O沿x軸向左平移2個單位長度得到點(diǎn)A,過點(diǎn)A作y軸的平行線交反比例函數(shù)的圖象于點(diǎn)B,AB=.求反比例函數(shù)的解析式;若P(,)、Q(,)是該反比例函數(shù)圖象上的兩點(diǎn),且時,,指出點(diǎn)P、Q各位于哪個象限?并簡要說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】試題分析:此題考察一元二次方程的解法,觀察發(fā)現(xiàn)可以采用提公因式法來解答此題.原方程可化為:,因此或,所以.故選D.考點(diǎn):一元二次方程的解法——因式分解法——提公因式法.2、C【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念求解.詳解:A、不是軸對稱圖形,也不是中心對稱圖形,故此選項(xiàng)錯誤;B、是軸對稱圖形,也是中心對稱圖形,故此選項(xiàng)錯誤;C、是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)正確;D、不是軸對稱圖形,也不是中心對稱圖形,故此選項(xiàng)錯誤.故選:C.點(diǎn)睛:本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.3、D【解析】

根據(jù)合并同類項(xiàng)的法則,積的乘方,完全平方公式,同底數(shù)冪的乘法的性質(zhì),對各選項(xiàng)分析判斷后利用排除法求解.【詳解】解:A、2x-x=x,錯誤;B、x2?x3=x5,錯誤;C、(m-n)2=m2-2mn+n2,錯誤;D、(-xy3)2=x2y6,正確;故選D.【點(diǎn)睛】考查了整式的運(yùn)算能力,對于相關(guān)的整式運(yùn)算法則要求學(xué)生很熟練,才能正確求出結(jié)果.4、C【解析】

列表得出進(jìn)出的所有情況,再從中確定出恰好選擇從同一個口進(jìn)出的結(jié)果數(shù),繼而根據(jù)概率公式計算可得.【詳解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE∴一共有25種等可能的情況,恰好選擇從同一個口進(jìn)出的有5種情況,∴恰好選擇從同一個口進(jìn)出的概率為=,故選C.【點(diǎn)睛】此題主要考查了列表法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.5、C【解析】

根據(jù)二次函數(shù)解析式求得對稱軸是x=3,由拋物線的對稱性得到答案.【詳解】解:由二次函數(shù)得到對稱軸是直線,則拋物線與軸的兩個交點(diǎn)坐標(biāo)關(guān)于直線對稱,∵其中一個交點(diǎn)的坐標(biāo)為,則另一個交點(diǎn)的坐標(biāo)為,故選C.【點(diǎn)睛】考查拋物線與x軸的交點(diǎn)坐標(biāo),解題關(guān)鍵是掌握拋物線的對稱性質(zhì).6、C【解析】

由旋轉(zhuǎn)性質(zhì)得到△AFB≌△AED,再根據(jù)相似三角對應(yīng)邊的比等于相似比,即可分別求得各選項(xiàng)正確與否.【詳解】解:由題意知,△AFB≌△AED∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.∴AE⊥AF,故此選項(xiàng)①正確;∴∠AFE=∠AEF=∠DAE+∠CFE,故④正確;∵△AEF是等腰直角三角形,有EF:AF=:1,故此選項(xiàng)②正確;∵△AEF與△AHF不相似,∴AF2=FH·FE不正確.故此選項(xiàng)③錯誤,∵HB//EC,∴△FBH∽△FCE,∴FB:FC=HB:EC,故此選項(xiàng)⑤正確.故選:C【點(diǎn)睛】本題主要考查了正方形的性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,熟練地應(yīng)用旋轉(zhuǎn)的性質(zhì)以及相似三角形的性質(zhì)是解決問題的關(guān)鍵.7、B【解析】∵=﹣8,﹣8的相反數(shù)是8,∴的相反數(shù)是8,故選B.8、C【解析】

根據(jù)各點(diǎn)在數(shù)軸上位置即可得出結(jié)論.【詳解】由圖可知,b<a<0,A.

∵b<a<0,∴a+b<0,故本選項(xiàng)錯誤;B.

∵b<a<0,∴ab>0,故本選項(xiàng)錯誤;C.

∵b<a<0,∴a>b,故本選項(xiàng)正確;D.

∵b<a<0,∴b?a<0,故本選項(xiàng)錯誤.故選C.9、D【解析】

分別根據(jù)同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式進(jìn)行逐一計算即可.【詳解】解:A.(x+1)2=x2+2x+1,故A錯誤;B.(x3)2=x6,故B錯誤;C.(2x)2=4x2,故C錯誤.D.x3?x2=x5,故D正確.故本題選D.【點(diǎn)睛】本題考查的是同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式,熟練掌握他們的定義是解題的關(guān)鍵.10、C【解析】

由一元二次方程有實(shí)數(shù)根可知△≥0,即可得出關(guān)于k的一元一次不等式,解之即可得出k的取值范圍.【詳解】∵關(guān)于x的一元二次方程x2?2x+k+2=0有實(shí)數(shù)根,∴△=(?2)2?4(k+2)?0,解得:k??1,在數(shù)軸上表示為:故選C.【點(diǎn)睛】本題考查了一元二次方程根的判別式.根據(jù)一元二次方程根的情況利用根的判別式列出不等式是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、+1【解析】

根據(jù)對稱性可知:GJ∥BH,GB∥JH,∴四邊形JHBG是平行四邊形,∴JH=BG,同理可證:四邊形CDFB是平行四邊形,∴CD=FB,∴FG+JH+CD=FG+BG+FB=2BF,設(shè)FG=x,∵∠AFG=∠AFB,∠FAG=∠ABF=36°,∴△AFG∽△BFA,∴AF2=FG?BF,∵AF=AG=BG=1,∴x(x+1)=1,∴x=(負(fù)根已經(jīng)舍棄),∴BF=+1=,∴FG+JH+CD=+1.故答案為+1.12、或【解析】分析:依據(jù)△DCM為直角三角形,需要分兩種情況進(jìn)行討論:當(dāng)∠CDM=90°時,△CDM是直角三角形;當(dāng)∠CMD=90°時,△CDM是直角三角形,分別依據(jù)含30°角的直角三角形的性質(zhì)以及等腰直角三角形的性質(zhì),即可得到折痕MN的長.詳解:分兩種情況:①如圖,當(dāng)∠CDM=90°時,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=+2,由折疊可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如圖,當(dāng)∠CMD=90°時,△CDM是直角三角形,由題可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD,又∵AB=+2,∴AN=2,BN=,過N作NH⊥AM于H,則∠ANH=30°,∴AH=AN=1,HN=,由折疊可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=,故答案為:或.點(diǎn)睛:本題考查了翻折變換-折疊問題,等腰直角三角形的性質(zhì),正確的作出圖形是解題的關(guān)鍵.折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.13、x>1【解析】依題意可得x-1>0,解得x>1,所以函數(shù)的自變量x的取值范圍是x>114、乙【解析】

∵丁〉甲乙=丙,∴從乙和丙中選擇一人參加比賽,

∵S

乙2<S

丙2,

∴選擇乙參賽,

故答案是:乙.15、.【解析】

根據(jù)共走了45米,每次前進(jìn)5米且左轉(zhuǎn)的角度相同,則可計算出該正多邊形的邊數(shù),再根據(jù)外角和計算左轉(zhuǎn)的角度.【詳解】連續(xù)左轉(zhuǎn)后形成的正多邊形邊數(shù)為:,則左轉(zhuǎn)的角度是.故答案是:.【點(diǎn)睛】本題考查了多邊形的外角計算,正確理解多邊形的外角和是360°是關(guān)鍵.16、【解析】

作出D關(guān)于AB的對稱點(diǎn)D’,則PC+PD的最小值就是CD’的長度,在△COD'中根據(jù)邊角關(guān)系即可求解.【詳解】解:如圖:作出D關(guān)于AB的對稱點(diǎn)D’,連接OC,OD',CD'.又∵點(diǎn)C在⊙O上,∠CAB=30°,D為弧BC的中點(diǎn),即,∴∠BAD'=∠CAB=15°.∴∠CAD'=45°.∴∠COD'=90°.則△COD'是等腰直角三角形.∵OC=OD'=AB=1,故答案為:.【點(diǎn)睛】本題考查了軸對稱-最短路線問題,勾股定理,垂徑定理,正確作出輔助線是解題的關(guān)鍵.17、10,,.【解析】解:如圖,過點(diǎn)A作AD⊥BC于點(diǎn)D,∵△ABC邊AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如圖①所示:可得四邊形ACBD是矩形,則其對角線長為:10;如圖②所示:AD=8,連接BC,過點(diǎn)C作CE⊥BD于點(diǎn)E,則EC=8,BE=2BD=12,則BC=;如圖③所示:BD=6,由題意可得:AE=6,EC=2BE=16,故AC==.故答案為10,,.三、解答題(共7小題,滿分69分)18、(1)-1;(2).【解析】

(1)根據(jù)零指數(shù)冪的意義、特殊角的銳角三角函數(shù)以及負(fù)整數(shù)指數(shù)冪的意義即可求出答案;(2)先化簡原式,然后將a的值代入即可求出答案.【詳解】(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1;(2)原式=+=當(dāng)a=﹣2+時,原式==.【點(diǎn)睛】本題考查了學(xué)生的運(yùn)算能力,解題的關(guān)鍵是熟練運(yùn)用運(yùn)算法則,本題屬于基礎(chǔ)題型.19、(1)四邊形AEA′F為菱形.理由見解析;(2)1.【解析】

(1)先證明AE=AF,再根據(jù)折疊的性質(zhì)得AE=A′E,AF=A′F,然后根據(jù)菱形的判定方法可判斷四邊形AEA′F為菱形;(2)四先利用四邊形AEA′F是正方形得到∠A=90°,則AB=AC=BC=6,然后利用正方形AEA′F的面積是△ABC的一半得到AE2=??6?6,然后利用算術(shù)平方根的定義求AE即可.【詳解】(1)四邊形AEA′F為菱形.理由如下:∵AB=AC,∴∠B=∠C,∵EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∵△AEF沿著直線EF向下翻折,得到△A′EF,∴AE=A′E,AF=A′F,∴AE=A′E=AF=A′F,∴四邊形AEA′F為菱形;(2)∵四邊形AEA′F是正方形,∴∠A=90°,∴△ABC為等腰直角三角形,∴AB=AC=BC=×6=6,∵正方形AEA′F的面積是△ABC的一半,∴AE2=??6?6,∴AE=1.【點(diǎn)睛】本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.20、(1)y=﹣x2﹣x+3;(2)點(diǎn)P的坐標(biāo)為(﹣,1);(3)當(dāng)AM+CN的值最大時,點(diǎn)D的坐標(biāo)為(,).【解析】

(1)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A、C的坐標(biāo),由點(diǎn)B所在的位置結(jié)合點(diǎn)B的橫坐標(biāo)可得出點(diǎn)B的坐標(biāo),根據(jù)點(diǎn)A、B、C的坐標(biāo),利用待定系數(shù)法即可求出拋物線的函數(shù)關(guān)系式;(2)過點(diǎn)P作PE⊥x軸,垂足為點(diǎn)E,則△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性質(zhì)即可求出AE、PE的長度,進(jìn)而可得出點(diǎn)P的坐標(biāo);(3)連接AC交OD于點(diǎn)F,由點(diǎn)到直線垂線段最短可找出當(dāng)AC⊥OD時AM+CN取最大值,過點(diǎn)D作DQ⊥x軸,垂足為點(diǎn)Q,則△DQO∽△AOC,根據(jù)相似三角形的性質(zhì)可設(shè)點(diǎn)D的坐標(biāo)為(﹣3t,4t),利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于t的一元二次方程,解之取其負(fù)值即可得出t值,再將其代入點(diǎn)D的坐標(biāo)即可得出結(jié)論.【詳解】(1)∵直線y=x+3與x軸、y軸分別交于A、C兩點(diǎn),∴點(diǎn)A的坐標(biāo)為(﹣4,0),點(diǎn)C的坐標(biāo)為(0,3).∵點(diǎn)B在x軸上,點(diǎn)B的橫坐標(biāo)為,∴點(diǎn)B的坐標(biāo)為(,0),設(shè)拋物線的函數(shù)關(guān)系式為y=ax2+bx+c(a≠0),將A(﹣4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:,解得:,∴拋物線的函數(shù)關(guān)系式為y=﹣x2﹣x+3;(2)如圖1,過點(diǎn)P作PE⊥x軸,垂足為點(diǎn)E,∵△PCD、△PAD有相同的高,且S△PCD=2S△PAD,∴CP=2AP,∵PE⊥x軸,CO⊥x軸,∴△APE∽△ACO,∴,∴AE=AO=,PE=CO=1,∴OE=OA﹣AE=,∴點(diǎn)P的坐標(biāo)為(﹣,1);(3)如圖2,連接AC交OD于點(diǎn)F,∵AM⊥OD,CN⊥OD,∴AF≥AM,CF≥CN,∴當(dāng)點(diǎn)M、N、F重合時,AM+CN取最大值,過點(diǎn)D作DQ⊥x軸,垂足為點(diǎn)Q,則△DQO∽△AOC,∴,∴設(shè)點(diǎn)D的坐標(biāo)為(﹣3t,4t).∵點(diǎn)D在拋物線y=﹣x2﹣x+3上,∴4t=﹣3t2+t+3,解得:t1=﹣(不合題意,舍去),t2=,∴點(diǎn)D的坐標(biāo)為(,),故當(dāng)AM+CN的值最大時,點(diǎn)D的坐標(biāo)為(,).【點(diǎn)睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、一次(二次)函數(shù)圖象上點(diǎn)的坐標(biāo)特征、三角形的面積以及相似三角形的性質(zhì),解題的關(guān)鍵是:(1)根據(jù)點(diǎn)A、B、C的坐標(biāo),利用待定系數(shù)法求出拋物線的函數(shù)關(guān)系式;(2)利用相似三角形的性質(zhì)找出AE、PE的長;(3)利用相似三角形的性質(zhì)設(shè)點(diǎn)D的坐標(biāo)為(﹣3t,4t).21、(1)答案見解析;(2)AB=1BE;(1)1.【解析】試題分析:(1)先判斷出∠OCF+∠CFO=90°,再判斷出∠OCF=∠ODF,即可得出結(jié)論;(2)先判斷出∠BDE=∠A,進(jìn)而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出結(jié)論;(1)設(shè)BE=x,則DE=EF=2x,AB=1x,半徑OD=x,進(jìn)而得出OE=1+2x,最后用勾股定理即可得出結(jié)論.試題解析:(1)證明:連結(jié)OD,如圖.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵點(diǎn)D在⊙O上,∴DE是⊙O的切線;(2)線段AB、BE之間的數(shù)量關(guān)系為:AB=1BE.證明如下:∵AB為⊙O直徑,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴.∵Rt△ABD中,tanA==,∴=,∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=1BE;(1)設(shè)BE=x,則DE=EF=2x,AB=1x,半徑OD=x.∵OF=1,∴OE=1+2x.在Rt△ODE中,由勾股定理可得:(x)2+(2x)2=(1+2x)2,∴x=﹣(舍)或x=2,∴圓O的半徑為1.點(diǎn)睛:本題是圓的綜合題,主要考查了切線的判定和性質(zhì),等腰三角形的性質(zhì),銳角三角函數(shù),相似三角形的判定和性質(zhì),勾股定理,判斷出△EBD∽△EDA是解答本題的關(guān)鍵.22、(1)y=(x﹣3)1﹣1;(1)11<x3+x4+x5<9+1.【解析】

(1)利用二次函數(shù)解析式的頂點(diǎn)式求得結(jié)果即可;(1)由已知條件可知直線與圖象“G”要有3個交點(diǎn).分類討論:分別求得平行于x軸的直線與圖象“G”有1個交點(diǎn)、1個交點(diǎn)時x3+x4+x5的取值范圍,易得直線與圖象“G”要有3個交點(diǎn)時x3+x4+x5的取值范圍.【詳解】(1)有上述信息可知該函數(shù)圖象的頂點(diǎn)坐標(biāo)為:(3,﹣1)設(shè)二次函數(shù)表達(dá)式為:y=a(x﹣3)1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論