2021-2022學年山東省煙臺市芝罘區(qū)中考猜題數學試卷含解析_第1頁
2021-2022學年山東省煙臺市芝罘區(qū)中考猜題數學試卷含解析_第2頁
2021-2022學年山東省煙臺市芝罘區(qū)中考猜題數學試卷含解析_第3頁
2021-2022學年山東省煙臺市芝罘區(qū)中考猜題數學試卷含解析_第4頁
2021-2022學年山東省煙臺市芝罘區(qū)中考猜題數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022學年山東省煙臺市芝罘區(qū)中考猜題數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.計算結果是()A.0 B.1 C.﹣1 D.x2.下列方程中是一元二次方程的是()A. B.C. D.3.從3、1、-2這三個數中任取兩個不同的數作為P點的坐標,則P點剛好落在第四象限的概率是()A. B. C. D.4.不論x、y為何值,用配方法可說明代數式x2+4y2+6x﹣4y+11的值()A.總不小于1B.總不小于11C.可為任何實數D.可能為負數5.關于x的不等式組的所有整數解是()A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,26.下列運算正確的是()A.2+a=3 B.=C. D.=7.已知下列命題:①對頂角相等;②若a>b>0,則<;③對角線相等且互相垂直的四邊形是正方形;④拋物線y=x2﹣2x與坐標軸有3個不同交點;⑤邊長相等的多邊形內角都相等.從中任選一個命題是真命題的概率為()A. B. C. D.8.在下列四個汽車標志圖案中,能用平移變換來分析其形成過程的圖案是()A. B. C. D.9.在Rt△ABC中,∠C=90°,AC=5,AB=13,則sinA的值為()A.512 B.513 C.1210.不透明袋子中裝有一個幾何體模型,兩位同學摸該模型并描述它的特征.甲同學:它有4個面是三角形;乙同學:它有8條棱.該模型的形狀對應的立體圖形可能是()A.三棱柱 B.四棱柱 C.三棱錐 D.四棱錐二、填空題(本大題共6個小題,每小題3分,共18分)11.分式有意義時,x的取值范圍是_____.12.如圖,在△ABC中,BA=BC=4,∠A=30°,D是AC上一動點,AC的長=_____;BD+DC的最小值是_____.13.﹣|﹣1|=______.14.化簡:_____________.15.如圖,為了測量某棵樹的高度,小明用長為2m的竹竿做測量工具,移動竹竿,使竹竿、樹的頂端的影子恰好落在地面的同一點.此時,竹竿與這一點距離相距6m,與樹相距15m,則樹的高度為_________m.16.如圖,將直尺與含30°角的三角尺擺放在一起,若∠1=20°,則∠2的度數是___.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系中,拋物線y=﹣x2﹣2ax與x軸相交于O、A兩點,OA=4,點D為拋物線的頂點,并且直線y=kx+b與該拋物線相交于A、B兩點,與y軸相交于點C,B點的橫坐標是﹣1.(1)求k,a,b的值;(2)若P是直線AB上方拋物線上的一點,設P點的橫坐標是t,△PAB的面積是S,求S關于t的函數關系式,并直接寫出自變量t的取值范圍;(3)在(2)的條件下,當PB∥CD時,點Q是直線AB上一點,若∠BPQ+∠CBO=180°,求Q點坐標.18.(8分)計算:÷+8×2﹣1﹣(+1)0+2?sin60°.19.(8分)九(1)班數學興趣小組經過市場調查,整理出某種商品在第x(1≤x≤90)天的售價與銷售量的相關信息如下表:時間x(天)

1≤x<50

50≤x≤90

售價(元/件)

x+40

90

每天銷量(件)

200-2x

已知該商品的進價為每件30元,設銷售該商品的每天利潤為y元[求出y與x的函數關系式;問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結果.20.(8分)()如圖①已知四邊形中,,BC=b,,求:①對角線長度的最大值;②四邊形的最大面積;(用含,的代數式表示)()如圖②,四邊形是某市規(guī)劃用地的示意圖,經測量得到如下數據:,,,,請你利用所學知識探索它的最大面積(結果保留根號)21.(8分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.(1)如圖1,當點E在邊BC上時,求證DE=EB;(2)如圖2,當點E在△ABC內部時,猜想ED和EB數量關系,并加以證明;(1)如圖1,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.22.(10分)今年3月12日植樹節(jié)期間,學校預購進A、B兩種樹苗,若購進A種樹苗3棵,B種樹苗5棵,需2100元,若購進A種樹苗4棵,B種樹苗10棵,需3800元.(1)求購進A、B兩種樹苗的單價;(2)若該單位準備用不多于8000元的錢購進這兩種樹苗共30棵,求A種樹苗至少需購進多少棵?23.(12分)如圖,一座鋼結構橋梁的框架是△ABC,水平橫梁BC長18米,中柱AD高6米,其中D是BC的中點,且AD⊥BC.(1)求sinB的值;(2)現需要加裝支架DE、EF,其中點E在AB上,BE=2AE,且EF⊥BC,垂足為點F,求支架DE的長.24.如圖,安徽江淮集團某部門研制了繪圖智能機器人,該機器人由機座、手臂和末端操作器三部分組成,底座直線且,手臂,末端操作器,直線.當機器人運作時,,求末端操作器節(jié)點到地面直線的距離.(結果保留根號)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題解析:.故選C.考點:分式的加減法.2、C【解析】

找到只含有一個未知數,未知數的最高次數是2,二次項系數不為0的整式方程的選項即可.【詳解】解:A、當a=0時,不是一元二次方程,故本選項錯誤;B、是分式方程,故本選項錯誤;C、化簡得:是一元二次方程,故本選項正確;D、是二元二次方程,故本選項錯誤;故選:C.【點睛】本題主要考查一元二次方程,熟練掌握一元二次方程的定義是解題的關鍵.3、B【解析】解:畫樹狀圖得:∵共有6種等可能的結果,其中(1,-2),(3,-2)點落在第四項象限,∴P點剛好落在第四象限的概率==.故選B.點睛:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件,熟記各象限內點的符號特點是解題的關鍵.4、A【解析】

利用配方法,根據非負數的性質即可解決問題;【詳解】解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,

又∵(x+3)2≥0,(2y-1)2≥0,

∴x2+4y2+6x-4y+11≥1,

故選:A.【點睛】本題考查配方法的應用,非負數的性質等知識,解題的關鍵是熟練掌握配方法.5、B【解析】

分別求出每一個不等式的解集,根據口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集,據此即可得出答案.【詳解】解不等式﹣2x<4,得:x>﹣2,解不等式3x﹣5<1,得:x<2,則不等式組的解集為﹣2<x<2,所以不等式組的整數解為﹣1、0、1,故選:B.【點睛】考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.6、D【解析】

根據整式的混合運算計算得到結果,即可作出判斷.【詳解】A、2與a不是同類項,不能合并,不符合題意;B、=,不符合題意;C、原式=,不符合題意;D、=,符合題意,故選D.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.7、B【解析】∵①對頂角相等,故此選項正確;②若a>b>0,則<,故此選項正確;③對角線相等且互相垂直平分的四邊形是正方形,故此選項錯誤;④拋物線y=x2﹣2x與坐標軸有2個不同交點,故此選項錯誤;⑤邊長相等的多邊形內角不一定都相等,故此選項錯誤;∴從中任選一個命題是真命題的概率為:.故選:B.8、D【解析】

根據平移不改變圖形的形狀和大小,將題中所示的圖案通過平移后可以得到的圖案是D.【詳解】解:觀察圖形可知圖案D通過平移后可以得到.

故選D.【點睛】本題考查圖形的平移,圖形的平移只改變圖形的位置,而不改變圖形的形狀和大小,學生易混淆圖形的平移與旋轉或翻轉.9、C【解析】

先根據勾股定理求出BC得長,再根據銳角三角函數正弦的定義解答即可.【詳解】如圖,根據勾股定理得,BC=AB∴sinA=BCAB故選C.【點睛】本題考查了銳角三角函數的定義及勾股定理,熟知銳角三角函數正弦的定義是解決問題的關鍵.10、D【解析】試題分析:根據有四個三角形的面,且有8條棱,可知是四棱錐.而三棱柱有兩個三角形的面,四棱柱沒有三角形的面,三棱錐有四個三角形的面,但是只有6條棱.故選D考點:幾何體的形狀二、填空題(本大題共6個小題,每小題3分,共18分)11、x<1【解析】

要使代數式有意義時,必有1﹣x>2,可解得x的范圍.【詳解】根據題意得:1﹣x>2,解得:x<1.故答案為x<1.【點睛】考查了分式和二次根式有意義的條件.二次根式有意義,被開方數為非負數,分式有意義,分母不為2.12、(Ⅰ)AC=4(Ⅱ)4,2.【解析】

(Ⅰ)如圖,過B作BE⊥AC于E,根據等腰三角形的性質和解直角三角形即可得到結論;(Ⅱ)如圖,作BC的垂直平分線交AC于D,則BD=CD,此時BD+DC的值最小,解直角三角形即可得到結論.【詳解】解:(Ⅰ)如圖,過B作BE⊥AC于E,∵BA=BC=4,∴AE=CE,∵∠A=30°,∴AE=AB=2,∴AC=2AE=4;(Ⅱ)如圖,作BC的垂直平分線交AC于D,則BD=CD,此時BD+DC的值最小,∵BF=CF=2,∴BD=CD==,∴BD+DC的最小值=2,故答案為:4,2.【點睛】本題考查了等腰三角形的性質,線段垂直平分線的性質,解直角三角形,正確的作出輔助線是解題的關鍵.13、2【解析】

原式利用立方根定義,以及絕對值的代數意義計算即可求出值.【詳解】解:原式=3﹣1=2,故答案為:2【點睛】此題考查了實數的運算,熟練掌握運算法則是解本題的關鍵.14、【解析】

根據分式的運算法則即可求解.【詳解】原式=.故答案為:.【點睛】此題主要考查分式的運算,解題的關鍵是熟知分式的運算法則.15、7【解析】設樹的高度為m,由相似可得,解得,所以樹的高度為7m16、50°【解析】

先根據三角形外角的性質求出∠BEF的度數,再根據平行線的性質得到∠2的度數.【詳解】如圖所示:

∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,

∴∠BEF=∠1+∠F=50°,

∵AB∥CD,

∴∠2=∠BEF=50°,

故答案是:50°.【點睛】考查了平行線的性質,解題的關鍵是掌握、運用三角形外角的性質(三角形的一個外角等于與它不相鄰的兩個內角的和).三、解答題(共8題,共72分)17、(1)k=1、a=2、b=4;(2)s=﹣t2﹣t﹣6,自變量t的取值范圍是﹣4<t<﹣1;(3)Q(﹣,)【解析】

(1)根據題意可得A(-4,0)代入拋物線解析式可得a,求出拋物線解析式,根據B的橫坐標可求B點坐標,把A,B坐標代入直線解析式,可求k,b(2)過P點作PN⊥OA于N,交AB于M,過B點作BH⊥PN,設出P點坐標,可求出N點坐標,即可以用t表示S.(3)由PB∥CD,可求P點坐標,連接OP,交AC于點R,過P點作PN⊥OA于M,交AB于N,過D點作DT⊥OA于T,根據P的坐標,可得∠POA=45°,由OA=OC可得∠CAO=45°則PO⊥AB,根據拋物線的對稱性可知R在對稱軸上.設Q點坐標,根據△BOR∽△PQS,可求Q點坐標.【詳解】(1)∵OA=4∴A(﹣4,0)∴﹣16+8a=0∴a=2,∴y=﹣x2﹣4x,當x=﹣1時,y=﹣1+4=3,∴B(﹣1,3),將A(﹣4,0)B(﹣1,3)代入函數解析式,得,解得,直線AB的解析式為y=x+4,∴k=1、a=2、b=4;(2)過P點作PN⊥OA于N,交AB于M,過B點作BH⊥PN,如圖1,由(1)知直線AB是y=x+4,拋物線是y=﹣x2﹣4x,∴當x=t時,yP=﹣t2﹣4t,yN=t+4PN=﹣t2﹣4t﹣(t+4)=﹣t2﹣5t﹣4,BH=﹣1﹣t,AM=t﹣(﹣4)=t+4,S△PAB=PN(AM+BH)=(﹣t2﹣5t﹣4)(﹣1﹣t+t+4)=(﹣t2﹣5t﹣4)×3,化簡,得s=﹣t2﹣t﹣6,自變量t的取值范圍是﹣4<t<﹣1;∴﹣4<t<﹣1(3)y=﹣x2﹣4x,當x=﹣2時,y=4即D(﹣2,4),當x=0時,y=x+4=4,即C(0,4),∴CD∥OA∵B(﹣1,3).當y=3時,x=﹣3,∴P(﹣3,3),連接OP,交AC于點R,過P點作PN⊥OA于M,交AB于N,過D點作DT⊥OA于T,如圖2,可證R在DT上∴PN=ON=3∴∠PON=∠OPN=45°∴∠BPR=∠PON=45°,∵OA=OC,∠AOC=90°∴∠PBR=∠BAO=45°,∴PO⊥AC∵∠BPQ+∠CBO=180,∴∠BPQ=∠BCO+∠BOC過點Q作QS⊥PN,垂足是S,∴∠SPQ=∠BOR∴tan∠SPQ=tan∠BOR,可求BR=,OR=2,設Q點的橫坐標是m,當x=m時y=m+4,∴SQ=m+3,PS=﹣m﹣1∴,解得m=﹣.當x=﹣時,y=,Q(﹣,).【點睛】本題考查二次函數綜合題、一次函數的應用、相似三角形的判定和性質、全等三角形的判定和性質等知識,解題的關鍵是靈活運用所學知識,學會添加常用輔助線,構造特殊四邊形解決問題.18、6+.【解析】

利用負整數指數冪、零指數冪的意義和特殊角的三角函數值進行計算.【詳解】解:原式=+8×﹣1+2×=3+4﹣1+=6+.【點睛】本題考查了二次根式的混合運算:先把各二次根式化簡為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當的解題途徑,往往能事半功倍.19、(1);(2)第45天時,當天銷售利潤最大,最大利潤是6050元;(3)41.【解析】

(1)根據單價乘以數量,可得利潤,可得答案.(2)根據分段函數的性質,可分別得出最大值,根據有理數的比較,可得答案.(3)根據二次函數值大于或等于4800,一次函數值大于或等于48000,可得不等式,根據解不等式組,可得答案.【詳解】(1)當1≤x<50時,,當50≤x≤90時,,綜上所述:.(2)當1≤x<50時,二次函數開口下,二次函數對稱軸為x=45,當x=45時,y最大=-2×452+180×45+2000=6050,當50≤x≤90時,y隨x的增大而減小,當x=50時,y最大=6000,綜上所述,該商品第45天時,當天銷售利潤最大,最大利潤是6050元.(3)解,結合函數自變量取值范圍解得,解,結合函數自變量取值范圍解得所以當20≤x≤60時,即共41天,每天銷售利潤不低于4800元.【點睛】本題主要考查了1.二次函數和一次函數的應用(銷售問題);2.由實際問題列函數關系式;3.二次函數和一次函數的性質;4.分類思想的應用.20、(1)①;②;(2)150+475+475.【解析】

(1)①由條件可知AC為直徑,可知BD長度的最大值為AC的長,可求得答案;②連接AC,求得AD2+CD2,利用不等式的性質可求得AD?CD的最大值,從而可求得四邊形ABCD面積的最大值;(2)連接AC,延長CB,過點A做AE⊥CB交CB的延長線于E,可先求得△ABC的面積,結合條件可求得∠D=45°,且A、C、D三點共圓,作AC、CD中垂線,交點即為圓心O,當點D與AC的距離最大時,△ACD的面積最大,AC的中垂線交圓O于點D',交AC于F,FD'即為所求最大值,再求得

△ACD′的面積即可.【詳解】(1)①因為∠B=∠D=90°,所以四邊形ABCD是圓內接四邊形,AC為圓的直徑,則BD長度的最大值為AC,此時BD=,②連接AC,則AC2=AB2+BC2=a2+b2=AD2+CD2,S△ACD=ADCD≤(AD2+CD2)=(a2+b2),所以四邊形ABCD的最大面積=(a2+b2)+ab=;(2)如圖,連接AC,延長CB,過點A作AE⊥CB交CB的延長線于E,因為AB=20,∠ABE=180°-∠ABC=60°,所以AE=ABsin60°=10,EB=ABcos60°=10,S△ABC=AEBC=150,因為BC=30,所以EC=EB+BC=40,AC==10,因為∠ABC=120°,∠BAD+∠BCD=195°,所以∠D=45°,則△ACD中,∠D為定角,對邊AC為定邊,所以,A、C、D點在同一個圓上,做AC、CD中垂線,交點即為圓O,如圖,當點D與AC的距離最大時,△ACD的面積最大,AC的中垂線交圓O于點D’,交AC于F,FD’即為所求最大值,連接OA、OC,∠AOC=2∠AD’C=90°,OA=OC,所以△AOC,△AOF等腰直角三角形,AO=OD’=5,OF=AF==5,D’F=5+5,S△ACD’=ACD’F=5×(5+5)=475+475,所以Smax=S△ABC+S△ACD=150+475+475.【點睛】本題為圓的綜合應用,涉及知識點有圓周角定理、不等式的性質、解直角三角形及轉化思想等.在(1)中注意直徑是最長的弦,在(2)中確定出四邊形ABCD面積最大時,D點的位置是解題的關鍵.本題考查知識點較多,綜合性很強,計算量很大,難度適中.21、(1)證明見解析;(2)ED=EB,證明見解析;(1)CG=2.【解析】

(1)、根據等邊三角形的性質得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=BE;(2)、取AB的中點O,連接CO、EO,根據△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(1)、取AB的中點O,連接CO、EO、EB,根據題意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,設CG=a,則AG=5a,OD=a,根據題意列出一元一次方程求出a的值得出答案.【詳解】(1)∵△CDE是等邊三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中點O,連接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO為等邊三角形,∴CA=CO,∵△CDE是等邊三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中點O,連接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,設CG=a,則AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.22、(1)購進A種樹苗的單價為200元/棵,購進B種樹苗的單價為300元/棵(2)A種樹苗至少需購進1棵【解析】

(1)設購進A種樹苗的單價為x元/棵,購進B種樹

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論