版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022學(xué)年浙江省寧波市七中學(xué)教育集團(tuán)中考數(shù)學(xué)最后沖刺濃縮精華卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.滿足不等式組的整數(shù)解是()A.﹣2 B.﹣1 C.0 D.12.計(jì)算的結(jié)果等于()A.-5 B.5 C. D.3.如圖,已知二次函數(shù)y=ax2+bx的圖象與正比例函數(shù)y=kx的圖象相交于點(diǎn)A(1,2),有下面四個(gè)結(jié)論:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正確的是()A.①② B.②③ C.①④ D.③④4.用半徑為8的半圓圍成一個(gè)圓錐的側(cè)面,則圓錐的底面半徑等于()A.4 B.6 C.16π D.85.在平面直角坐標(biāo)系中,位于第二象限的點(diǎn)是()A.(﹣1,0) B.(﹣2,﹣3) C.(2,﹣1) D.(﹣3,1)6.如圖,在熱氣球C處測(cè)得地面A、B兩點(diǎn)的俯角分別為30°、45°,熱氣球C的高度CD為100米,點(diǎn)A、D、B在同一直線上,則AB兩點(diǎn)的距離是()A.200米 B.200米 C.220米 D.100米7.如圖,邊長(zhǎng)為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點(diǎn)上,則∠BED的正切值等于()A. B. C.2 D.8.如圖,AB∥ED,CD=BF,若△ABC≌△EDF,則還需要補(bǔ)充的條件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E9.如圖,動(dòng)點(diǎn)P從(0,3)出發(fā),沿所示方向運(yùn)動(dòng),每當(dāng)碰到矩形的邊時(shí)反彈,反彈時(shí)反射角等于入射角.當(dāng)點(diǎn)P第2018次碰到矩形的邊時(shí),點(diǎn)P的坐標(biāo)為()A.(1,4) B.(7,4) C.(6,4) D.(8,3)10.四根長(zhǎng)度分別為3,4,6,x(x為正整數(shù))的木棒,從中任取三根.首尾順次相接都能組成一個(gè)三角形,則().A.組成的三角形中周長(zhǎng)最小為9 B.組成的三角形中周長(zhǎng)最小為10C.組成的三角形中周長(zhǎng)最大為19 D.組成的三角形中周長(zhǎng)最大為16二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在網(wǎng)格中,小正方形的邊長(zhǎng)均為1,點(diǎn)A、B、O都在格點(diǎn)上,則∠OAB的正弦值是_____.12.下列圖形是用火柴棒擺成的“金魚(yú)”,如果第1個(gè)圖形需要8根火柴,則第2個(gè)圖形需要14根火柴,第根圖形需要____________根火柴.13.如圖,把矩形紙片OABC放入平面直角坐標(biāo)系中,使OA、OC分別落在x軸、y軸上,連接OB,將紙片OABC沿OB折疊,使點(diǎn)A落在點(diǎn)A′的位置,若OB=,tan∠BOC=,則點(diǎn)A′的坐標(biāo)為_(kāi)____.14.如圖,?ABCD中,M、N是BD的三等分點(diǎn),連接CM并延長(zhǎng)交AB于點(diǎn)E,連接EN并延長(zhǎng)交CD于點(diǎn)F,以下結(jié)論:①E為AB的中點(diǎn);②FC=4DF;③S△ECF=;④當(dāng)CE⊥BD時(shí),△DFN是等腰三角形.其中一定正確的是_____.15.分式與的最簡(jiǎn)公分母是_____.16.已知一個(gè)多邊形的每一個(gè)外角都等于,則這個(gè)多邊形的邊數(shù)是.17.如圖,路燈距離地面6,身高1.5的小明站在距離燈的底部(點(diǎn))15的處,則小明的影子的長(zhǎng)為_(kāi)_______.三、解答題(共7小題,滿分69分)18.(10分)如圖,中,,于,,為邊上一點(diǎn).(1)當(dāng)時(shí),直接寫(xiě)出,.(2)如圖1,當(dāng),時(shí),連并延長(zhǎng)交延長(zhǎng)線于,求證:.(3)如圖2,連交于,當(dāng)且時(shí),求的值.19.(5分)如圖,點(diǎn)O為Rt△ABC斜邊AB上的一點(diǎn),以O(shè)A為半徑的⊙O與BC切于點(diǎn)D,與AC交于點(diǎn)E,連接AD.求證:AD平分∠BAC;若∠BAC=60°,OA=4,求陰影部分的面積(結(jié)果保留π).20.(8分)(1)問(wèn)題:如圖1,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),∠DPC=∠A=∠B=90°.求證:AD·BC=AP·BP.(2)探究:如圖2,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),當(dāng)∠DPC=∠A=∠B=θ時(shí),上述結(jié)論是否依然成立.說(shuō)明理由.(3)應(yīng)用:請(qǐng)利用(1)(2)獲得的經(jīng)驗(yàn)解決問(wèn)題:如圖3,在△ABD中,AB=6,AD=BD=1.點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度,由點(diǎn)A出發(fā),沿邊AB向點(diǎn)B運(yùn)動(dòng),且滿足∠DPC=∠A.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)DC的長(zhǎng)與△ABD底邊上的高相等時(shí),求t的值.21.(10分)如圖①,二次函數(shù)的拋物線的頂點(diǎn)坐標(biāo)C,與x軸的交于A(1,0)、B(﹣3,0)兩點(diǎn),與y軸交于點(diǎn)D(0,3).(1)求這個(gè)拋物線的解析式;(2)如圖②,過(guò)點(diǎn)A的直線與拋物線交于點(diǎn)E,交y軸于點(diǎn)F,其中點(diǎn)E的橫坐標(biāo)為﹣2,若直線PQ為拋物線的對(duì)稱軸,點(diǎn)G為直線PQ上的一動(dòng)點(diǎn),則x軸上是否存在一點(diǎn)H,使D、G、H、F四點(diǎn)所圍成的四邊形周長(zhǎng)最???若存在,求出這個(gè)最小值及點(diǎn)G、H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;(3)如圖③,連接AC交y軸于M,在x軸上是否存在點(diǎn)P,使以P、C、M為頂點(diǎn)的三角形與△AOM相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.22.(10分)對(duì)于平面直角坐標(biāo)系中的點(diǎn),將它的縱坐標(biāo)與橫坐標(biāo)的比稱為點(diǎn)的“理想值”,記作.如的“理想值”.(1)①若點(diǎn)在直線上,則點(diǎn)的“理想值”等于_______;②如圖,,的半徑為1.若點(diǎn)在上,則點(diǎn)的“理想值”的取值范圍是_______.(2)點(diǎn)在直線上,的半徑為1,點(diǎn)在上運(yùn)動(dòng)時(shí)都有,求點(diǎn)的橫坐標(biāo)的取值范圍;(3),是以為半徑的上任意一點(diǎn),當(dāng)時(shí),畫(huà)出滿足條件的最大圓,并直接寫(xiě)出相應(yīng)的半徑的值.(要求畫(huà)圖位置準(zhǔn)確,但不必尺規(guī)作圖)23.(12分)已知拋物線的開(kāi)口向上頂點(diǎn)為P(1)若P點(diǎn)坐標(biāo)為(4,一1),求拋物線的解析式;(2)若此拋物線經(jīng)過(guò)(4,一1),當(dāng)-1≤x≤2時(shí),求y的取值范圍(用含a的代數(shù)式表示)(3)若a=1,且當(dāng)0≤x≤1時(shí),拋物線上的點(diǎn)到x軸距離的最大值為6,求b的值24.(14分)如圖,拋物線(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知B點(diǎn)坐標(biāo)為(4,0).(1)求拋物線的解析式;(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標(biāo);(3)若點(diǎn)M是線段BC下方的拋物線上一點(diǎn),求△MBC的面積的最大值,并求出此時(shí)M點(diǎn)的坐標(biāo).
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】
先求出每個(gè)不等式的解集,再根據(jù)不等式的解集求出不等式組的解集即可.【詳解】∵解不等式①得:x≤0.5,解不等式②得:x>-1,∴不等式組的解集為-1<x≤0.5,∴不等式組的整數(shù)解為0,故選C.【點(diǎn)睛】本題考查了解一元一次不等式組和不等式組的整數(shù)解,能根據(jù)不等式的解集找出不等式組的解集是解此題的關(guān)鍵.2、A【解析】
根據(jù)有理數(shù)的除法法則計(jì)算可得.【詳解】解:15÷(-3)=-(15÷3)=-5,
故選:A.【點(diǎn)睛】本題主要考查有理數(shù)的除法,解題的關(guān)鍵是掌握有理數(shù)的除法法則:兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除.3、B【解析】
根據(jù)拋物線圖象性質(zhì)確定a、b符號(hào),把點(diǎn)A代入y=ax2+bx得到a與b數(shù)量關(guān)系,代入②,不等式kx≤ax2+bx的解集可以轉(zhuǎn)化為函數(shù)圖象的高低關(guān)系.【詳解】解:根據(jù)圖象拋物線開(kāi)口向上,對(duì)稱軸在y軸右側(cè),則a>0,b<0,則①錯(cuò)誤將A(1,2)代入y=ax2+bx,則2=9a+1b∴b=,∴a﹣b=a﹣()=4a﹣>-,故②正確;由正弦定義sinα=,則③正確;不等式kx≤ax2+bx從函數(shù)圖象上可視為拋物線圖象不低于直線y=kx的圖象則滿足條件x范圍為x≥1或x≤0,則④錯(cuò)誤.故答案為:B.【點(diǎn)睛】二次函數(shù)的圖像,sinα公式,不等式的解集.4、A【解析】
由于半圓的弧長(zhǎng)=圓錐的底面周長(zhǎng),那么圓錐的底面周長(zhǎng)為8π,底面半徑=8π÷2π.【詳解】解:由題意知:底面周長(zhǎng)=8π,∴底面半徑=8π÷2π=1.故選A.【點(diǎn)睛】此題主要考查了圓錐側(cè)面展開(kāi)扇形與底面圓之間的關(guān)系,圓錐的側(cè)面展開(kāi)圖是一個(gè)扇形,此扇形的弧長(zhǎng)等于圓錐底面周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng),解決本題的關(guān)鍵是應(yīng)用半圓的弧長(zhǎng)=圓錐的底面周長(zhǎng).5、D【解析】
點(diǎn)在第二象限的條件是:橫坐標(biāo)是負(fù)數(shù),縱坐標(biāo)是正數(shù),直接得出答案即可.【詳解】根據(jù)第二象限的點(diǎn)的坐標(biāo)的特征:橫坐標(biāo)符號(hào)為負(fù),縱坐標(biāo)符號(hào)為正,各選項(xiàng)中只有C(﹣3,1)符合,故選:D.【點(diǎn)睛】本題考查點(diǎn)的坐標(biāo)的性質(zhì),解題的關(guān)鍵是掌握點(diǎn)的坐標(biāo)的性質(zhì).6、D【解析】
在熱氣球C處測(cè)得地面B點(diǎn)的俯角分別為45°,BD=CD=100米,再在Rt△ACD中求出AD的長(zhǎng),據(jù)此即可求出AB的長(zhǎng).【詳解】∵在熱氣球C處測(cè)得地面B點(diǎn)的俯角分別為45°,∴BD=CD=100米,∵在熱氣球C處測(cè)得地面A點(diǎn)的俯角分別為30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故選D.【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用--仰角、俯角問(wèn)題,要求學(xué)生能借助仰角構(gòu)造直角三角形并解直角三角形.7、D【解析】
根據(jù)同弧或等弧所對(duì)的圓周角相等可知∠BED=∠BAD,再結(jié)合圖形根據(jù)正切的定義進(jìn)行求解即可得.【詳解】∵∠DAB=∠DEB,∴tan∠DEB=tan∠DAB=,故選D.【點(diǎn)睛】本題考查了圓周角定理(同弧或等弧所對(duì)的圓周角相等)和正切的概念,正確得出相等的角是解題關(guān)鍵.8、C【解析】
根據(jù)平行線性質(zhì)和全等三角形的判定定理逐個(gè)分析.【詳解】由,得∠B=∠D,因?yàn)?,若≌,則還需要補(bǔ)充的條件可以是:AB=DE,或∠E=∠A,∠EFD=∠ACB,故選C【點(diǎn)睛】本題考核知識(shí)點(diǎn):全等三角形的判定.解題關(guān)鍵點(diǎn):熟記全等三角形判定定理.9、B【解析】如圖,經(jīng)過(guò)6次反彈后動(dòng)點(diǎn)回到出發(fā)點(diǎn)(0,3),∵2018÷6=336…2,∴當(dāng)點(diǎn)P第2018次碰到矩形的邊時(shí)為第336個(gè)循環(huán)組的第2次反彈,點(diǎn)P的坐標(biāo)為(7,4).故選C.10、D【解析】
首先寫(xiě)出所有的組合情況,再進(jìn)一步根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進(jìn)行分析.【詳解】解:其中的任意三根的組合有3、4、1;3、4、x;3、1、x;4、1、x共四種情況,由題意:從中任取三根,首尾順次相接都能組成一個(gè)三角形,可得3<x<7,即x=4或5或1.①當(dāng)三邊為3、4、1時(shí),其周長(zhǎng)為3+4+1=13;②當(dāng)x=4時(shí),周長(zhǎng)最小為3+4+4=11,周長(zhǎng)最大為4+1+4=14;③當(dāng)x=5時(shí),周長(zhǎng)最小為3+4+5=12,周長(zhǎng)最大為4+1+5=15;④若x=1時(shí),周長(zhǎng)最小為3+4+1=13,周長(zhǎng)最大為4+1+1=11;綜上所述,三角形周長(zhǎng)最小為11,最大為11,故選:D.【點(diǎn)睛】本題考查的是三角形三邊關(guān)系,利用了分類討論的思想.掌握三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答本題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
如圖,過(guò)點(diǎn)O作OC⊥AB的延長(zhǎng)線于點(diǎn)C,則AC=4,OC=2,在Rt△ACO中,AO=,∴sin∠OAB=.故答案為.12、【解析】
根據(jù)圖形可得每增加一個(gè)金魚(yú)就增加6根火柴棒即可解答.【詳解】第一個(gè)圖中有8根火柴棒組成,第二個(gè)圖中有8+6個(gè)火柴棒組成,第三個(gè)圖中有8+2×6個(gè)火柴組成,……∴組成n個(gè)系列正方形形的火柴棒的根數(shù)是8+6(n-1)=6n+2.故答案為6n+2【點(diǎn)睛】本題考查數(shù)字規(guī)律問(wèn)題,通過(guò)歸納與總結(jié),得到其中的規(guī)律是解題關(guān)鍵.13、【解析】
如圖,作輔助線;根據(jù)題意首先求出AB、BC的長(zhǎng)度;借助面積公式求出A′D、OD的長(zhǎng)度,即可解決問(wèn)題.【詳解】解:∵四邊形OABC是矩形,∴OA=BC,AB=OC,tan∠BOC==,∴AB=2OA,∵,OB=,∴OA=2,AB=2.∵OA′由OA翻折得到,∴OA′=OA=2.如圖,過(guò)點(diǎn)A′作A′D⊥x軸與點(diǎn)D;設(shè)A′D=a,OD=b;∵四邊形ABCO為矩形,∴∠OAB=∠OCB=90°;四邊形ABA′D為梯形;設(shè)AB=OC=a,BC=AO=b;∵OB=,tan∠BOC=,∴,解得:;由題意得:A′O=AO=2;△ABO≌△A′BO;由勾股定理得:x2+y2=2①,由面積公式得:xy+2××2×2=(x+2)×(y+2)②;聯(lián)立①②并解得:x=,y=.故答案為(?,)【點(diǎn)睛】該題以平面直角坐標(biāo)系為載體,以翻折變換為方法構(gòu)造而成;綜合考查了矩形的性質(zhì)、三角函數(shù)的定義、勾股定理等幾何知識(shí)點(diǎn);對(duì)分析問(wèn)題解決問(wèn)題的能力提出了較高的要求.14、①③④【解析】
由M、N是BD的三等分點(diǎn),得到DN=NM=BM,根據(jù)平行四邊形的性質(zhì)得到AB=CD,AB∥CD,推出△BEM∽△CDM,根據(jù)相似三角形的性質(zhì)得到,于是得到BE=AB,故①正確;根據(jù)相似三角形的性質(zhì)得到=,求得DF=BE,于是得到DF=AB=CD,求得CF=3DF,故②錯(cuò)誤;根據(jù)已知條件得到S△BEM=S△EMN=S△CBE,求得=,于是得到S△ECF=,故③正確;根據(jù)線段垂直平分線的性質(zhì)得到EB=EN,根據(jù)等腰三角形的性質(zhì)得到∠ENB=∠EBN,等量代換得到∠CDN=∠DNF,求得△DFN是等腰三角形,故④正確.【詳解】解:∵??M、N是BD的三等分點(diǎn),∴DN=NM=BM,∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,∴△BEM∽△CDM,∴,∴BE=CD,∴BE=AB,故①正確;∵AB∥CD,∴△DFN∽△BEN,∴=,∴DF=BE,∴DF=AB=CD,∴CF=3DF,故②錯(cuò)誤;∵BM=MN,CM=2EM,∴△BEM=S△EMN=S△CBE,∵BE=CD,CF=CD,∴=,∴S△EFC=S△CBE=S△MNE,∴S△ECF=,故③正確;∵BM=NM,EM⊥BD,∴EB=EN,∴∠ENB=∠EBN,∵CD∥AB,∴∠ABN=∠CDB,∵∠DNF=∠BNE,∴∠CDN=∠DNF,∴△DFN是等腰三角形,故④正確;故答案為①③④.【點(diǎn)睛】考點(diǎn):相似三角形的判定與性質(zhì);全等三角形的判定與性質(zhì);平行四邊形的性質(zhì).15、3a2b【解析】
利用取各分母系數(shù)的最小公倍數(shù)與字母因式的最高次冪的積作公分母求解即可.【詳解】分式與的最簡(jiǎn)公分母是3a2b.故答案為3a2b.【點(diǎn)睛】本題考查最簡(jiǎn)公分母,解題的關(guān)鍵是掌握求最簡(jiǎn)公分母的方法.16、5【解析】
∵多邊形的每個(gè)外角都等于72°,∵多邊形的外角和為360°,∴360°÷72°=5,∴這個(gè)多邊形的邊數(shù)為5.故答案為5.17、1.【解析】
易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影長(zhǎng).【詳解】解:根據(jù)題意,易得△MBA∽△MCO,
根據(jù)相似三角形的性質(zhì)可知,即,
解得AM=1m.則小明的影長(zhǎng)為1米.
故答案是:1.【點(diǎn)睛】本題只要是把實(shí)際問(wèn)題抽象到相似三角形中,利用相似三角形的相似比可得出小明的影長(zhǎng).三、解答題(共7小題,滿分69分)18、(1),;(2)證明見(jiàn)解析;(3).【解析】
(1)利用相似三角形的判定可得,列出比例式即可求出結(jié)論;(2)作交于,設(shè),則,根據(jù)平行線分線段成比例定理列出比例式即可求出AH和EH,然后根據(jù)平行線分線段成比例定理列出比例式即可得出結(jié)論;(3)作于,根據(jù)相似三角形的判定可得,列出比例式可得,設(shè),,,即可求出x的值,根據(jù)平行線分線段成比例定理求出,設(shè),,,然后根據(jù)勾股定理求出AC,即可得出結(jié)論.【詳解】(1)如圖1中,當(dāng)時(shí),.,,,,,,.故答案為:,.(2)如圖中,作交于.,,∴tan∠B=,tan∠ACE=tan∠B=∴BE=2CE,,,設(shè),則,,,,,,,.(3)如圖2中,作于.,,,,,,,,,,,設(shè),,,則有,解得或(舍棄),,,,,,,,,,,設(shè),,,在中,,,,,.【點(diǎn)睛】此題考查的是相似三角形的應(yīng)用和銳角三角函數(shù),此題難度較大,掌握相似三角形的判定及性質(zhì)、平行線分線段成比例定理和利用銳角三角函數(shù)解直角三角形是解決此題的關(guān)鍵.19、(1)見(jiàn)解析;(2)【解析】試題分析:(1)連接OD,則由已知易證OD∥AC,從而可得∠CAD=∠ODA,結(jié)合∠ODA=∠OAD,即可得到∠CAD=∠OAD,從而得到AD平分∠BAC;(2)連接OE、DE,由已知易證△AOE是等邊三角形,由此可得∠ADE=∠AOE=30°,由AD平分∠BAC可得∠OAD=30°,從而可得∠ADE=∠OAD,由此可得DE∥AO,從而可得S陰影=S扇形ODE,這樣只需根據(jù)已知條件求出扇形ODE的面積即可.試題解析:(1)連接OD.∵BC是⊙O的切線,D為切點(diǎn),∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)連接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE為等邊三角形,∴∠AOE=60°,∴∠ADE=30°.又∵,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∴陰影部分的面積=S扇形ODE=.20、(2)證明見(jiàn)解析;(2)結(jié)論成立,理由見(jiàn)解析;(3)2秒或2秒.【解析】
(2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運(yùn)用相似三角形的性質(zhì)即可解決問(wèn)題;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運(yùn)用相似三角形的性質(zhì)即可解決問(wèn)題;(3)過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,根據(jù)等腰三角形的性質(zhì)可得AE=BE=3,根據(jù)勾股定理可得DE=4,由題可得DC=DE=4,則有BC=2-4=2.易證∠DPC=∠A=∠B.根據(jù)ADBC=APBP,就可求出t的值.【詳解】解:(2)如圖2,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴,∴ADBC=APBP;(2)結(jié)論ADBC=APBP仍成立;證明:如圖2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴,∴ADBC=APBP;(3)如下圖,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,∵AD=BD=2,AB=6,∴AE=BE=3∴DE==4,∵以D為圓心,以DC為半徑的圓與AB相切,∴DC=DE=4,∴BC=2-4=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(2)(2)的經(jīng)驗(yàn)得AD?BC=AP?BP,又∵AP=t,BP=6-t,∴t(6-t)=2×2,∴t=2或t=2,∴t的值為2秒或2秒.【點(diǎn)睛】本題考查圓的綜合題.21、【小題1】設(shè)所求拋物線的解析式為:,將A(1,0)、B(-3,0)、D(0,3)代入,得…………2分即所求拋物線的解析式為:……………3分【小題2】如圖④,在y軸的負(fù)半軸上取一點(diǎn)I,使得點(diǎn)F與點(diǎn)I關(guān)于x軸對(duì)稱,在x軸上取一點(diǎn)H,連接HF、HI、HG、GD、GE,則HF=HI…①設(shè)過(guò)A、E兩點(diǎn)的一次函數(shù)解析式為:y=kx+b(k≠0),∵點(diǎn)E在拋物線上且點(diǎn)E的橫坐標(biāo)為-2,將x=-2,代入拋物線,得∴點(diǎn)E坐標(biāo)為(-2,3)………………4分又∵拋物線圖象分別與x軸、y軸交于點(diǎn)A(1,0)、B(-3,0)、D(0,3),所以頂點(diǎn)C(-1,4)∴拋物線的對(duì)稱軸直線PQ為:直線x=-1,[中國(guó)教#&~@育出%版網(wǎng)]∴點(diǎn)D與點(diǎn)E關(guān)于PQ對(duì)稱,GD=GE……………②分別將點(diǎn)A(1,0)、點(diǎn)E(-2,3)代入y=kx+b,得:k+b=0,-2k+b=3解得:過(guò)A、E兩點(diǎn)的一次函數(shù)解析式為:y=-x+1∴當(dāng)x=0時(shí),y=1∴點(diǎn)F坐標(biāo)為(0,1)……5分∴|DF|=2………③又∵點(diǎn)F與點(diǎn)I關(guān)于x軸對(duì)稱,∴點(diǎn)I坐標(biāo)為(0,-1)∴|EI|=(-2-0)又∵要使四邊形DFHG的周長(zhǎng)最小,由于DF是一個(gè)定值,∴只要使DG+GH+HI最小即可……6分由圖形的對(duì)稱性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有當(dāng)EI為一條直線時(shí),EG+GH+HI最小設(shè)過(guò)E(-2,3)、I(0,-1)兩點(diǎn)的函數(shù)解析式為:y=k分別將點(diǎn)E(-2,3)、點(diǎn)I(0,-1)代入y=k-2k1過(guò)I、E兩點(diǎn)的一次函數(shù)解析式為:y=-2x-1∴當(dāng)x=-1時(shí),y=1;當(dāng)y=0時(shí),x=-12∴點(diǎn)G坐標(biāo)為(-1,1),點(diǎn)H坐標(biāo)為(-12∴四邊形DFHG的周長(zhǎng)最小為:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=2+2∴四邊形DFHG的周長(zhǎng)最小為2+25【小題3】如圖⑤,由(2)可知,點(diǎn)A(1,0),點(diǎn)C(-1,4),設(shè)過(guò)A(1,0),點(diǎn)C(-1,4)兩點(diǎn)的函數(shù)解析式為:,得:k2解得:k2過(guò)A、C兩點(diǎn)的一次函數(shù)解析式為:y=-2x+2,當(dāng)x=0時(shí),y=2,即M的坐標(biāo)為(0,2);由圖可知,△AOM為直角三角形,且OAOM要使,△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設(shè)P(,0),CM=,且∠CPM不可能為90°時(shí),因此可分兩種情況討論;……………9分①當(dāng)∠CMP=90°時(shí),CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;……………………10分②當(dāng)∠PCM=90°時(shí),CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.……11分綜上所述,存在以P、C、M為頂點(diǎn)的三角形與△AOM相似,點(diǎn)P的坐標(biāo)為(-4,0)12分【解析】(1)直接利用三點(diǎn)式求出二次函數(shù)的解析式;(2)若四邊形DFHG的周長(zhǎng)最小,應(yīng)將邊長(zhǎng)進(jìn)行轉(zhuǎn)換,利用對(duì)稱性,要使四邊形DFHG的周長(zhǎng)最小,由于DF是一個(gè)定值,只要使DG+GH+HI最小即可,由圖形的對(duì)稱性和,可知,HF=HI,GD=GE,DG+GH+HF=EG+GH+HI只有當(dāng)EI為一條直線時(shí),EG+GH+HI最小,即|EI|=(-2-0即邊形DFHG的周長(zhǎng)最小為2+25(3)要使△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設(shè)P(,0),CM=,且∠CPM不可能為90°時(shí),因此可分兩種情況討論,①當(dāng)∠CMP=90°時(shí),CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;②當(dāng)∠PCM=90°時(shí),CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.即求出以P、C、M為頂點(diǎn)的三角形與△AOM相似的P的坐標(biāo)(-4,0)22、(1)①﹣3;②;(2);(3)【解析】
(1)①把Q(1,a)代入y=x-4,可求出a值,根據(jù)理想值定義即可得答案;②由理想值越大,點(diǎn)與原點(diǎn)連線與軸夾角越大,可得直線與相切時(shí)理想值最大,與x中相切時(shí),理想值最小,即可得答案;(2)根據(jù)題意,討論與軸及直線相切時(shí),LQ取最小值和最大值,求出點(diǎn)橫坐標(biāo)即可;(3)根據(jù)題意將點(diǎn)轉(zhuǎn)化為直線,點(diǎn)理想值最大時(shí)點(diǎn)在上,分析圖形即可.【詳解】(1)①∵點(diǎn)在直線上,∴,∴點(diǎn)的“理想值”=-3,故答案為:﹣3.②當(dāng)點(diǎn)在與軸切點(diǎn)時(shí),點(diǎn)的“理想值”最小為0.當(dāng)點(diǎn)縱坐標(biāo)與橫坐標(biāo)比值最大時(shí),的“理想值”最大,此時(shí)直線與切于點(diǎn),設(shè)點(diǎn)Q(x,y),與x軸切于A,與OQ切于Q,∵C(,1),∴tan∠COA==,∴∠COA=30°,∵OQ、OA是的切線,∴∠QOA=2∠COA=60°,∴=tan∠QOA=tan60°=,∴點(diǎn)的“理想值”為,故答案為:.(2)設(shè)直線與軸、軸的交點(diǎn)分別為點(diǎn),點(diǎn),當(dāng)x=0時(shí),y=3,當(dāng)y=0時(shí),x+3=0,解得:x=,∴,.∴,,∴tan∠OAB=,∴.∵,∴①如圖,作直線.當(dāng)與軸相切時(shí),LQ=0,相應(yīng)的圓心滿足題意,其橫坐標(biāo)取到最大值.作軸于點(diǎn),∴,∴.∵的半徑為1,∴.∴,∴.∴.②如圖當(dāng)與直線相切時(shí),LQ=,相應(yīng)的圓心滿足題意,其橫坐標(biāo)取到最小值.作軸于點(diǎn),則.設(shè)直線與直線的交點(diǎn)為.∵直線中,k=,∴,∴,點(diǎn)F與Q重合,則.∵的半徑為1,∴.∴.∴,∴.∴.由①②可得,的取值范圍是.(3)∵M(jìn)(2,m),∴M點(diǎn)在直線x=2上,∵,∴LQ取最大值時(shí),=,∴作直線y=x,與x=2交于點(diǎn)N,當(dāng)M與ON和x軸同時(shí)相切時(shí),半徑r最大,根據(jù)題意作圖如下:M與ON相切于Q,與x軸相切于E,把x=2代入y=x得:y=4,∴NE=4,OE=2,ON==6,∴∠MQN=∠NEO=90°,又∵∠ONE=∠MNQ,∴,∴,即,解得:r=.∴最大半徑為.【點(diǎn)睛】本題是一次函數(shù)和圓的綜合題,主要考查了一次函數(shù)和圓的切線的性質(zhì),解答時(shí)要注意做好數(shù)形結(jié)合,根據(jù)圖形進(jìn)行分類討論.23、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.【解析】
(1)將P(4,-1)代入,可求出解析式
(2)將(4,-1)代入求得:b=-4a-1,再代入對(duì)稱軸直線中,可判斷,且開(kāi)口向上,所以y隨x的增大而減小,再把x=-1,x=2代入即可求得.
(3)觀察圖象可得,當(dāng)0≤x≤1時(shí),拋物線上的點(diǎn)到x軸距離的最大值為6,這些點(diǎn)可能為x=0,x=1,三種情況,再根據(jù)對(duì)稱軸在不同位置進(jìn)行討論即可.【詳解】解:(1)由此拋物線頂點(diǎn)為P(4,-1),所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=,b=-8a=-2所以拋物線解析式為:;(2)由此拋物線經(jīng)過(guò)點(diǎn)C(4,-1),所以一1=16a+4b+3,即b=-4a-1.因?yàn)閽佄锞€的開(kāi)口向上,則有其對(duì)稱軸為直線,而所以當(dāng)-1≤x≤2時(shí),y隨著x的增大而減小當(dāng)x=-1時(shí),y=a+(4a+1)+3=4+5a當(dāng)x=2時(shí),y=4a-2(4a+1)+3=1-4a所以當(dāng)-1≤x≤2時(shí),1-4a≤y≤4+5a;(3)當(dāng)a=1時(shí),拋物線的解析式為y=x2+bx+3∴拋物線的對(duì)稱軸為直線由拋物線圖象可知,僅當(dāng)x=0,x=1或x=-時(shí),拋物線上的點(diǎn)可能離x軸最遠(yuǎn)分別代入可得,當(dāng)x=0時(shí),y=3當(dāng)x=1時(shí),y=b+4當(dāng)x=-時(shí),y=-+3①當(dāng)一<0,即b>0時(shí),3≤y≤b+4,由b+4=6解得b=2②當(dāng)0≤-≤1時(shí),即一2≤b≤0時(shí),△=b2-12<0,拋物線與x軸無(wú)公共點(diǎn)由b+4=6解得b=2(舍去);③當(dāng),即b<-2時(shí),b+4≤y≤3,由b+4=-6解得b=-10綜上,b=2或-10【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),待定系數(shù)法求函數(shù)解析式,以及最值問(wèn)題,關(guān)鍵是對(duì)稱軸在不同
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 服務(wù)行業(yè)銷售工作總結(jié)
- 教研工作推動(dòng)學(xué)科建設(shè)
- 幼兒園小班區(qū)角計(jì)劃
- 家長(zhǎng)育兒經(jīng)驗(yàn)總結(jié)
- 家居行業(yè)營(yíng)業(yè)員崗位總結(jié)
- 個(gè)人素質(zhì)低的糾正
- 科技公司辦公室衛(wèi)生防護(hù)
- 新時(shí)代好少年評(píng)選主要事跡(7篇)
- 康復(fù)科護(hù)士個(gè)人工作的述職報(bào)告
- 打通消防通道宣傳標(biāo)語(yǔ)
- 超市柜臺(tái)長(zhǎng)期出租合同范例
- 人教版三年級(jí)下冊(cè)數(shù)學(xué)期中測(cè)試卷含答案(新)
- 【8物(科)期末】合肥市第四十五中學(xué)2023-2024學(xué)年八年級(jí)上學(xué)期期末物理試題
- 2024-2025學(xué)年深圳市初三適應(yīng)性考試模擬試卷歷史試卷
- 2024政府采購(gòu)評(píng)審專家考試題庫(kù)附含答案
- 第24課《穿井得一人》公開(kāi)課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì) 統(tǒng)編版語(yǔ)文七年級(jí)上冊(cè)
- 提高吸入劑使用正確率品管圈成果匯報(bào)
- 2024年全新七年級(jí)語(yǔ)文上冊(cè)期末試卷及答案(人教版)
- 北京郵電大學(xué)《大數(shù)據(jù)技術(shù)與應(yīng)用》2022-2023學(xué)年期末試卷
- 2024年滬教版一年級(jí)上學(xué)期語(yǔ)文期末復(fù)習(xí)習(xí)題
- 吉林高校新型智庫(kù)建設(shè)實(shí)施方案
評(píng)論
0/150
提交評(píng)論