




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
PAGE6-立體幾何知識點【重點知識整合】1.直線與平面平行的判定和性質(zhì)(1)判定:①判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行;②面面平行的性質(zhì):若兩個平面平行,則其中一個平面內(nèi)的任何直線與另一個平面平行.(2)性質(zhì):如果一條直線和一個平面平行,那么經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行.注意:在遇到線面平行時,常需作出過已知直線且與已知平面相交的輔助平面,以便運用線面平行的性質(zhì).2.直線和平面垂直的判定和性質(zhì)(1)判定:①如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線和這個平面垂直.②兩條平行線中有一條直線和一個平面垂直,那么另一條直線也和這個平面垂直.(2)性質(zhì):①如果一條直線和一個平面垂直,那么這條直線和這個平面內(nèi)所有直線都垂直.②如果兩條直線都垂直于同一個平面,那么這兩條直線平行.3.平面與平面平行(1)判定:一個如果平面內(nèi)有兩條相交直線和另一個平面平行,則這兩個平面平行.注意:這里必須清晰“相交”這個條件.如果兩個平面平行,那么在其中一個平面內(nèi)的所有直線與另一個平面無公共點,即這些直線都平行于另一個平面.(2)性質(zhì):如果兩個平行平面同時與第三個平面相交,那么它們的交線平行.注意:這個定理給出了判斷兩條直線平行的方法,注意一定是第三個平面與兩個平行平面相交,其交線平行.4.兩個平面垂直的判定和性質(zhì)(1)判定:①判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直.②定義法:即證兩個相交平面所成的二面角為直二面角;注意:在證明兩個平面垂直時,一般先從已知有的直線中尋找平面的垂線,若不存在這樣的直線,則可以通過添加輔助線解決,而作輔助線應(yīng)有理論依據(jù);如果已知面面垂直,一般先用面面垂直的性質(zhì)定理,即在一個平面內(nèi)作交線的垂直,使之轉(zhuǎn)化為線面垂直,然后進一步轉(zhuǎn)化為線線垂直.(2)性質(zhì):①如果兩個平面垂直,那么在一個平面內(nèi)垂直于它們交線的直線垂直于另一個平面.②兩個平面垂直,則經(jīng)過第一個平面內(nèi)的一點垂直于第二個平面的直線在第一個平面內(nèi).注意:性質(zhì)定理中成立有兩個條件:一是線在平面內(nèi),二是線垂直于交線,才能有線面垂直.(3)立體幾何中平行、垂直關(guān)系的證明的基本思路是利用線面關(guān)系的轉(zhuǎn)化,即:5.直線與平面所成的角(1)定義:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫這條直線和這個平面所成的角.當直線和平面垂直時,就說直線和平面所稱的角為直角;當直線與平面平行或在平面內(nèi)時,就說直線和平面所稱的角為SKIPIF1<0角.(2)范圍:SKIPIF1<0;(3)求法:作出直線在平面上的射影,關(guān)鍵是找到異于斜足的一點在平面內(nèi)的垂足,可根據(jù)面面垂直的性質(zhì)定理來確定垂線.(4)最小角定理:斜線與平面中所有直線所成角中最小的角是斜線與平面所成的角.6.二面角(1)二面角定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,每個半平面叫做二面角的面.二面角的大小是通過其平面角來度量的平面角,而二面角的平面角的三要素:①頂點在棱上;②角的兩邊分別在兩個半平面內(nèi);③角的兩邊與棱都垂直.(2)作平面角的主要方法:①定義法:直接在二面角的棱上取一點(特殊點),分別在兩個半平面內(nèi)作棱的垂線,得出平面角,用定義法時,要認真觀察圖形的特性;②三垂線法:過其中一個面內(nèi)一點作另一個面的垂線,用三垂線定理或逆定理作出二面角的平面角;③垂面法:過一點作棱的垂面,則垂面與兩個半平面的交線所成的角即為平面角;(3)二面角的范圍:SKIPIF1<0;7利用向量處理平行問題(1)證明線線平行,找出兩條直線的方向向量,證明方向向量共線;(2)證明線面平行的方法:①證明直線的方向向量與平面內(nèi)的某一向量是共線(平行);②證明直線的方向向量與平面的兩個不共線向量是共線向量,即利用共面向量定理進行證明;③證明直線的方向向量與該平面的法向量垂直.(3)平面與平面平行的證明方法:證明兩個平面的法向量平行.8(理)利用向量處理垂直問題(1)證明線線垂直,可證明兩條線的方向向量的數(shù)量積為0;(2)證明線面垂直方法:①根據(jù)線面垂直的判定定理利用向量證明直線與平面內(nèi)的兩條相交直線垂直;②轉(zhuǎn)化為證明直線的方向向量與平面的法向量共線.(3)證明面面垂直的方法:①根據(jù)面面垂直的判定定理利用向量證明一個平面內(nèi)的一條直線方向向量為另一個平面的法向量;②證明一個平面的法向量與另一人平面平行;③轉(zhuǎn)化為證明這兩個平面的法向量互相垂直.9.利用向量處理角度問題1.求異面直線所成的角的向量法:其基本步驟是(1)在a、b上分別取SKIPIF1<0;或者建立空間直角坐標系用坐標表示SKIPIF1<0;(2)由公式SKIPIF1<0確定異面直線a與b所成角SKIPIF1<0的大小.2.求直線和平面所成的角的向量法:在斜線上取一方向向量SKIPIF1<0,并求出平面SKIPIF1<0的一個法向量SKIPIF1<0,若設(shè)斜線和平面所成的角為SKIPIF1<0,由SKIPIF1<0.3.求二面角的向量法:方法(1)設(shè)SKIPIF1<0,SKIPIF1<0分別是平面SKIPIF1<0的法向量,則向量SKIPIF1<0和SKIPIF1<0的夾角與二面角SKIPIF1<0的平面角相等或互補.方法(2)二面角的棱SKIPIF1<0上確定兩個點SKIPIF1<0,過SKIPIF1<0分別在平面SKIPIF1<0內(nèi)求出與SKIPIF1<0垂直的向量SKIPIF1<0,則二面角SKIPIF1<0的大小等于向量SKIPIF1<0的夾角,即SKIPIF1<0【應(yīng)試技巧點撥】1.線線平行與垂直的證明證明線線平行的方法:(1)平行公理;(2)線面平行的性質(zhì)定理;(3)面面平行的性質(zhì)定理;(4)向量平行.要注意線面、面面平行的性質(zhì)定理的成立條件.證明線線垂直的方法:(1)異面直線所成的角為直角;(2)線面垂直的性質(zhì)定理;(3)面面垂直的性質(zhì)定理;(4)三垂線定理和逆定理;(5)勾股定理;(6)向量垂直.要注意線面、面面垂直的性質(zhì)定理的成立條件.解題過程中要特別體會平行關(guān)系性質(zhì)的傳遞性,垂直關(guān)系的多樣性.2.線面平行與垂直的證明方法線面平行與垂直位置關(guān)系的確定,也是高考考查的熱點,在小題中考查關(guān)系的確定,在解答題考查證明細節(jié).線面平行的證明方法:(1)線面平行的定義;(2)線面平行的判斷定理;(3)面面平行的性質(zhì)定理;(4)向量法:證明這條直線的方向向量和這個平面內(nèi)的一個向量互相平行;證明這個直線的方向向量和這個平面的法向量相互垂直.線面平行的證明思考途徑:線線平行線面平行面面平行.線面垂直的證明方法:(1)線面垂直的定義;(2)線面垂直的判斷定理;(3)面面垂直的性質(zhì)定理;(4)向量法:證明這個直線的方向向量和這個平面的法向量相互平行.線面垂直的證明思考途徑:線線垂直線面垂直面面垂直.3.面面平行與垂直的證明(1)面面平行的證明方法:①反證法:假設(shè)兩個平面不平行,則它們必相交,在導(dǎo)出矛盾;②面面平行的判斷定理;③利用性質(zhì):垂直于同一直線的兩個平面平行;平行于同一平面的兩個平面平行;④向量法:證明兩個平面的法向量平行.(2)面面垂直的證明方法:①定義法;②面面垂直的判斷定理;③向量法:證明兩個平面的法向量垂直.解題時要由已知相性質(zhì),由求證想判定,即分析法和綜合法相結(jié)合尋找證明思路,關(guān)鍵在于對題目中的條件的思考和分析,掌握做此類題的一般技巧和方法,以及如何巧妙進行垂直之間的轉(zhuǎn)化.4.探索性問題探求某些點的具體位置,使得線面滿足平行或垂直關(guān)系,是一類逆向思維的題目.一般可采用兩個方法:一是先假設(shè)存在,再去推理,下結(jié)論;二是運用推理證明計算得出結(jié)論,或先利用條件特例得出結(jié)論,然后再根據(jù)條件給出證明或計算.5.如何求線面角(1)利用面面垂直性質(zhì)定理,巧定垂足:由面面垂直的性質(zhì)定理,可以得到線面垂直,這就為線面角中的垂足的確定提供了捷徑.(2)利用三棱錐的等體積,省去垂足在構(gòu)成線面角的直角三角形中,其中垂線段尤為關(guān)鍵.確定垂足,是常規(guī)方法.可是如果垂足位置不好確定,此時可以利用求點面距常用方法等體積法.從而不用確定垂足的位置,照樣可以求出線面角.因為垂線段的長度實際就是點面距h,利用三棱錐的等體積,只需求出h,然后利用進行求解.(3)妙用公式,直接得到線面角課本習(xí)題出現(xiàn)過這個公式:,如圖所示:.其中為直線AB與平面所成的線面角.這個公式在求解一些選擇填空題時,可直接應(yīng)用.但是一定要注意三個角的位置,不能張冠李戴.(4)萬能方法,空間向量求解不用找角設(shè)AB是平面的斜線,BO是平面的垂線,AB與平面所成的角,向量與的夾角,則.6.如何求二面角(1)直接法.直接法求二面角大小的步驟是:一作(找)、二證、三計算.即先作(找)出表示二面角大小的平面角,并證明這個角就是所求二面角的平面角,然后再計算這個角的大小.用直接法求二面角的大小,其關(guān)鍵是確定表示二面角大小的平面角.而確定其平面角,可從以下幾個方面著手:①利用三垂線定理(或三垂線定理的逆定理)確定平面角;②利用與二面角的棱垂直的平面確定平面角;③利用定義確定平面角;(2)射影面積法.利用射影面積公式=;此方法常用于無棱二面角大小的計算;對于無棱二面角問題還有一條途徑是設(shè)法作出它的棱,作法有“平移法”“延伸平面法”等.法二:設(shè),是二面角的兩個半平面的法向量,其方向一個指向內(nèi)側(cè),另一個指向外側(cè)(同等異補),則二面角的平面角SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<07.如何建立適當?shù)淖鴺讼蹈鶕?jù)幾何體本身的幾何性質(zhì),恰當建立空間直角坐標系最為關(guān)鍵,如果坐標系引入的恰當,合理,即能夠容易確定點的坐標,需要總結(jié)一些建系方法.常見建系方法:(1)借助三條兩兩相交且垂直的棱為坐標軸,如正方體,長方體等規(guī)則幾何體,一般選擇三條線為三個坐標軸,如圖1、2;(2)借助面面垂直的性質(zhì)定理建系,若題目中出現(xiàn)側(cè)面和底面垂線的條件,一般利用此條件添加輔助線,確定z軸,如圖3;(3)借助棱錐的高線建系等.對于正棱錐,利用定點在底面的射影為底面的中心,可確定z軸,然后在底面確定互相垂直的直線分別為x,y軸.如圖4.8.如何確定平面的法向量(1)首先觀察是否與存在于面垂直的法向量,若有可直接確定,若不存在,轉(zhuǎn)化為待定系數(shù)法;(2)待定系數(shù)法:由于法向量沒有規(guī)定長度,僅規(guī)定了方向,所以有一個自由度,于是可把法向量的某個坐標設(shè)為1,再求另兩個坐標.由于平面法向量是垂直于平面的向量,所以取平面的兩條相交向量,設(shè)由解方程組求得.9.向量為謀求解立體幾何的探索性問題空間向量最合適于解決立體幾何中探索性問題,它無需進行復(fù)雜繁難的作圖、論證、推理,只需通過坐標運算進行判斷,在解題過程中,往往把“是否存在”問題,轉(zhuǎn)化為“點的坐標是否有解,是否有規(guī)定范圍的解”等,所以使問題的解集更加簡單、有效,應(yīng)善于運用這一方法解題.【考場經(jīng)驗分享】1.在推證線面平行時,一定要強調(diào)直線不在平面內(nèi),否則,會出現(xiàn)錯誤.2.可以考慮向量的工具性作用,能用向量解決的盡可能應(yīng)用向量解決,可使問題簡化.3.在解決直線與平面垂直的問題過程中,要注意直線與平面垂直定義,判定定理和性質(zhì)定理的聯(lián)合交替使用,即注意線線垂直和線面垂直的互相轉(zhuǎn)化.4.面面垂直的性質(zhì)定理是作輔助
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 借款投資合作合同范本
- 公司廠房抵押合同范本
- ktv經(jīng)營合同范本
- 與商戶合同范本
- 親戚之間租車合同范本
- 勞動合同范本 日語
- 2024年重慶市榮昌區(qū)人民醫(yī)院招聘筆試真題
- 中國監(jiān)理合同范本
- 中山餐飲合同范本
- 2024年河源市紫金縣藍塘鎮(zhèn)招聘考試真題
- 小散工程施工安全培訓(xùn)
- 車站信號自動控制(第二版) 課件 -3-6502部分
- 商會2025年工作計劃
- 《安全生產(chǎn)法》2024版
- 《消費者心理與行為分析》第五版 課件全套 肖澗松 單元1-10 消費者心理與行為概述 - 消費者購買決策與購后行為
- 《會展概述》課件
- 體檢報告電子版
- 2024年中考語文真題分類匯編(全國版)專題12議論文閱讀(第01期)含答案及解析
- 七年級下冊心理健康教育教學(xué)設(shè)計
- 食堂清洗及消毒制度
- 服裝質(zhì)量管理制度
評論
0/150
提交評論