版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
吉林省長春市九臺示范高級中學(xué)2025年高三高考模擬考數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若函數(shù)有三個零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.2.在中,,則=()A. B.C. D.3.設(shè),集合,則()A. B. C. D.4.設(shè)全集為R,集合,,則A. B. C. D.5.著名的斐波那契數(shù)列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.40406.根據(jù)最小二乘法由一組樣本點(diǎn)(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點(diǎn)落在回歸直線上B.若所有樣本點(diǎn)都在回歸直線上,則變量同的相關(guān)系數(shù)為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關(guān)7.一場考試需要2小時,在這場考試中鐘表的時針轉(zhuǎn)過的弧度數(shù)為()A. B. C. D.8.如圖,是圓的一條直徑,為半圓弧的兩個三等分點(diǎn),則()A. B. C. D.9.若向量,則()A.30 B.31 C.32 D.3310.若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為()A.2 B. C. D.11.已知底面是等腰直角三角形的三棱錐P-ABC的三視圖如圖所示,俯視圖中的兩個小三角形全等,則()A.PA,PB,PC兩兩垂直 B.三棱錐P-ABC的體積為C. D.三棱錐P-ABC的側(cè)面積為12.設(shè)為非零實(shí)數(shù),且,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.三所學(xué)校舉行高三聯(lián)考,三所學(xué)校參加聯(lián)考的人數(shù)分別為160,240,400,為調(diào)查聯(lián)考數(shù)學(xué)學(xué)科的成績,現(xiàn)采用分層抽樣的方法在這三所學(xué)校中抽取樣本,若在學(xué)校抽取的數(shù)學(xué)成績的份數(shù)為30,則抽取的樣本容量為____________.14.在△ABC中,∠BAC=,AD為∠BAC的角平分線,且,若AB=2,則BC=_______.15.正方體的棱長為2,是它的內(nèi)切球的一條弦(我們把球面上任意兩點(diǎn)之間的線段稱為球的弦),為正方體表面上的動點(diǎn),當(dāng)弦的長度最大時,的取值范圍是______.16.已知定義在上的函數(shù)的圖象關(guān)于點(diǎn)對稱,,若函數(shù)圖象與函數(shù)圖象的交點(diǎn)為,則_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時,如果方程有兩個不等實(shí)根,求實(shí)數(shù)t的取值范圍,并證明.18.(12分)已知函數(shù)的最大值為,其中.(1)求實(shí)數(shù)的值;(2)若求證:.19.(12分)已知集合,集合,.(1)求集合B;(2)記,且集合M中有且僅有一個整數(shù),求實(shí)數(shù)k的取值范圍.20.(12分)已知點(diǎn),且,滿足條件的點(diǎn)的軌跡為曲線.(1)求曲線的方程;(2)是否存在過點(diǎn)的直線,直線與曲線相交于兩點(diǎn),直線與軸分別交于兩點(diǎn),使得?若存在,求出直線的方程;若不存在,請說明理由.21.(12分)已知.(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.22.(10分)分別為的內(nèi)角的對邊.已知.(1)若,求;(2)已知,當(dāng)?shù)拿娣e取得最大值時,求的周長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
根據(jù)所給函數(shù)解析式,畫出函數(shù)圖像.結(jié)合圖像,分段討論函數(shù)的零點(diǎn)情況:易知為的一個零點(diǎn);對于當(dāng)時,由代入解析式解方程可求得零點(diǎn),結(jié)合即可求得的范圍;對于當(dāng)時,結(jié)合導(dǎo)函數(shù),結(jié)合導(dǎo)數(shù)的幾何意義即可判斷的范圍.綜合后可得的范圍.【詳解】根據(jù)題意,畫出函數(shù)圖像如下圖所示:函數(shù)的零點(diǎn),即.由圖像可知,,所以是的一個零點(diǎn),當(dāng)時,,若,則,即,所以,解得;當(dāng)時,,則,且若在時有一個零點(diǎn),則,綜上可得,故選:B.本題考查了函數(shù)圖像的畫法,函數(shù)零點(diǎn)定義及應(yīng)用,根據(jù)零點(diǎn)個數(shù)求參數(shù)的取值范圍,導(dǎo)數(shù)的幾何意義應(yīng)用,屬于中檔題.2.B【解析】
在上分別取點(diǎn),使得,可知為平行四邊形,從而可得到,即可得到答案.【詳解】如下圖,,在上分別取點(diǎn),使得,則為平行四邊形,故,故答案為B.本題考查了平面向量的線性運(yùn)算,考查了學(xué)生邏輯推理能力,屬于基礎(chǔ)題.3.B【解析】
先化簡集合A,再求.【詳解】由得:,所以,因此,故答案為B本題主要考查集合的化簡和運(yùn)算,意在考查學(xué)生對這些知識的掌握水平和計算推理能力.4.B【解析】分析:由題意首先求得,然后進(jìn)行交集運(yùn)算即可求得最終結(jié)果.詳解:由題意可得:,結(jié)合交集的定義可得:.本題選擇B選項(xiàng).點(diǎn)睛:本題主要考查交集的運(yùn)算法則,補(bǔ)集的運(yùn)算法則等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.5.D【解析】
計算,代入等式,根據(jù)化簡得到答案.【詳解】,,,故,,故.故選:.本題考查了斐波那契數(shù)列,意在考查學(xué)生的計算能力和應(yīng)用能力.6.D【解析】
對每一個選項(xiàng)逐一分析判斷得解.【詳解】回歸直線必過樣本數(shù)據(jù)中心點(diǎn),但樣本點(diǎn)可能全部不在回歸直線上﹐故A錯誤;所有樣本點(diǎn)都在回歸直線上,則變量間的相關(guān)系數(shù)為,故B錯誤;若所有的樣本點(diǎn)都在回歸直線上,則的值與相等,故C錯誤;相關(guān)系數(shù)r與符號相同,若回歸直線的斜率,則,樣本點(diǎn)分布應(yīng)從左到右是上升的,則變量x與y正相關(guān),故D正確.故選D.本題主要考查線性回歸方程的性質(zhì),意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.7.B【解析】
因?yàn)闀r針經(jīng)過2小時相當(dāng)于轉(zhuǎn)了一圈的,且按順時針轉(zhuǎn)所形成的角為負(fù)角,綜合以上即可得到本題答案.【詳解】因?yàn)闀r針旋轉(zhuǎn)一周為12小時,轉(zhuǎn)過的角度為,按順時針轉(zhuǎn)所形成的角為負(fù)角,所以經(jīng)過2小時,時針?biāo)D(zhuǎn)過的弧度數(shù)為.故選:B本題主要考查正負(fù)角的定義以及弧度制,屬于基礎(chǔ)題.8.B【解析】
連接、,即可得到,,再根據(jù)平面向量的數(shù)量積及運(yùn)算律計算可得;【詳解】解:連接、,,是半圓弧的兩個三等分點(diǎn),,且,所以四邊形為棱形,.故選:B本題考查平面向量的數(shù)量積及其運(yùn)算律的應(yīng)用,屬于基礎(chǔ)題.9.C【解析】
先求出,再與相乘即可求出答案.【詳解】因?yàn)?所以.故選:C.本題考查了平面向量的坐標(biāo)運(yùn)算,考查了學(xué)生的計算能力,屬于基礎(chǔ)題.10.B【解析】
由題中垂直關(guān)系,可得漸近線的方程,結(jié)合,構(gòu)造齊次關(guān)系即得解【詳解】雙曲線的一條漸近線與直線垂直.∴雙曲線的漸近線方程為.,得.則離心率.故選:B本題考查了雙曲線的漸近線和離心率,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.11.C【解析】
根據(jù)三視圖,可得三棱錐P-ABC的直觀圖,然后再計算可得.【詳解】解:根據(jù)三視圖,可得三棱錐P-ABC的直觀圖如圖所示,其中D為AB的中點(diǎn),底面ABC.所以三棱錐P-ABC的體積為,,,,,、不可能垂直,即不可能兩兩垂直,,.三棱錐P-ABC的側(cè)面積為.故正確的為C.故選:C.本題考查三視圖還原直觀圖,以及三棱錐的表面積、體積的計算問題,屬于中檔題.12.C【解析】
取,計算知錯誤,根據(jù)不等式性質(zhì)知正確,得到答案.【詳解】,故,,故正確;取,計算知錯誤;故選:.本題考查了不等式性質(zhì),意在考查學(xué)生對于不等式性質(zhì)的靈活運(yùn)用.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
某層抽取的人數(shù)等于該層的總?cè)藬?shù)乘以抽樣比.【詳解】設(shè)抽取的樣本容量為x,由已知,,解得.故答案為:本題考查隨機(jī)抽樣中的分層抽樣,考查學(xué)生基本的運(yùn)算能力,是一道容易題.14.【解析】
由,求出長度關(guān)系,利用角平分線以及面積關(guān)系,求出邊,再由余弦定理,即可求解.【詳解】,,,,.故答案為:.本題考查共線向量的應(yīng)用、面積公式、余弦定理解三角形,考查計算求解能力,屬于中檔題.15.【解析】
由弦的長度最大可知為球的直徑.由向量的線性運(yùn)用表示出,即可由范圍求得的取值范圍.【詳解】連接,如下圖所示:設(shè)球心為,則當(dāng)弦的長度最大時,為球的直徑,由向量線性運(yùn)算可知正方體的棱長為2,則球的半徑為1,,所以,而所以,即故答案為:.本題考查了空間向量線性運(yùn)算與數(shù)量積的運(yùn)算,正方體內(nèi)切球性質(zhì)應(yīng)用,屬于中檔題.16.4038.【解析】
由函數(shù)圖象的對稱性得:函數(shù)圖象與函數(shù)圖象的交點(diǎn)關(guān)于點(diǎn)對稱,則,,即,得解.【詳解】由知:得函數(shù)的圖象關(guān)于點(diǎn)對稱又函數(shù)的圖象關(guān)于點(diǎn)對稱則函數(shù)圖象與函數(shù)圖象的交點(diǎn)關(guān)于點(diǎn)對稱則故,即本題正確結(jié)果:本題考查利用函數(shù)圖象的對稱性來求值的問題,關(guān)鍵是能夠根據(jù)函數(shù)解析式判斷出函數(shù)的對稱中心,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)當(dāng)時,的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;當(dāng)時,的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;(2),證明見解析.【解析】
(1)求出,對分類討論,分別求出的解,即可得出結(jié)論;(2)由(1)得出有兩解時的范圍,以及關(guān)系,將,等價轉(zhuǎn)化為證明,不妨設(shè),令,則,即證,構(gòu)造函數(shù),只要證明對于任意恒成立即可.【詳解】(1)的定義域?yàn)镽,且.由,得;由,得.故當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.(2)由(1)知當(dāng)時,,且.當(dāng)時,;當(dāng)時,.當(dāng)時,直線與的圖像有兩個交點(diǎn),實(shí)數(shù)t的取值范圍是.方程有兩個不等實(shí)根,,,,,,即.要證,只需證,即證,不妨設(shè).令,則,則要證,即證.令,則.令,則,在上單調(diào)遞增,.,在上單調(diào)遞增,,即成立,即成立..本題考查函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用,涉及到函數(shù)單調(diào)性、極值、零點(diǎn)、不等式證明,構(gòu)造函數(shù)函數(shù)是解題的關(guān)鍵,意在考查直觀想象、邏輯推理、數(shù)學(xué)計算能力,屬于較難題.18.(1)1;(2)證明見解析.【解析】
(1)利用零點(diǎn)分段法將表示為分段函數(shù)的形式,由此求得的最大值,進(jìn)而求得的值.(2)利用(1)的結(jié)論,將轉(zhuǎn)化為,求得的取值范圍,利用換元法,結(jié)合函數(shù)的單調(diào)性,證得,由此證得不等式成立.【詳解】(1)當(dāng)時,取得最大值.(2)證明:由(1)得,,,當(dāng)且僅當(dāng)時等號成立,令,則在上單調(diào)遞減當(dāng)時,.本小題主要考查含有絕對值的函數(shù)的最值的求法,考查利用基本不等式進(jìn)行證明,屬于中檔題.19.(1)(2)【解析】
(1)由不等式可得,討論與的關(guān)系,即可得到結(jié)果;(2)先解得不等式,由集合M中有且僅有一個整數(shù),當(dāng)時,則M中僅有的整數(shù)為;當(dāng)時,則M中僅有的整數(shù)為,進(jìn)而求解即可.【詳解】解:(1)因?yàn)?所以,當(dāng),即時,;當(dāng),即時,;當(dāng),即時,.(2)由得,當(dāng),即時,M中僅有的整數(shù)為,所以,即;當(dāng),即時,M中僅有的整數(shù)為,所以,即;綜上,滿足題意的k的范圍為本題考查解一元二次不等式,考查由交集的結(jié)果求參數(shù)范圍,考查分類討論思想與運(yùn)算能力.20.(1)(2)存在,或.【解析】
(1)由得看成到兩定點(diǎn)的和為定值,滿足橢圓定義,用定義可解曲線的方程.(2)先討論斜率不存在情況是否符合題意,當(dāng)直線的斜率存在時,設(shè)直線點(diǎn)斜式方程,由,可得,再直線與橢圓聯(lián)解,利用根的判別式得到關(guān)于的一元二次方程求解.【詳解】解:設(shè),由,,可得,即為,由,可得的軌跡是以為焦點(diǎn),且的橢圓,由,可得,可得曲線的方程為;假設(shè)存在過點(diǎn)的直線l符合題意.當(dāng)直線的斜率不存在,設(shè)方程為,可得為短軸的兩個端點(diǎn),不成立;當(dāng)直線的斜率存在時,設(shè)方程為,由,可得,即,可得,化為,由可得,由在橢圓內(nèi),可得直線與橢圓相交,,則化為,即為,解得,所以存在直線符合題意,且方程為或.本題考查求軌跡方程及直線與圓錐曲線位置關(guān)系問題.(1)定義法求軌跡方程的思路:應(yīng)用定義法求軌跡方程的關(guān)鍵在于由已知條件推出關(guān)于動點(diǎn)的等量關(guān)系式,由等量關(guān)系結(jié)合曲線定義判斷是何種曲線,再設(shè)出標(biāo)準(zhǔn)方程,用待定系數(shù)法求解;(2)解決是否存在直線的問題時,可依據(jù)條件尋找適合條件的直線方程,聯(lián)立方程消元得出一元二次方程,利用判別式得出是否有解.21.(1)答案不唯一,具體見解析(2)【解析】
(1)分類討論,利用導(dǎo)數(shù)的正負(fù),可得函數(shù)的單調(diào)區(qū)間.(2)分離出參數(shù)后,轉(zhuǎn)化為函數(shù)的最值問題解決,注意函數(shù)定義域.【詳解】(1)由得或①當(dāng)時,由,得.由,得或此時的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和.②當(dāng)時,由,得由,得或此時的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和綜上:當(dāng)時,單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和當(dāng)時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和.(2)依題意,不等式恒成立等價于在上恒成立,可得,在上恒成立,設(shè),則令,得,(舍)當(dāng)時,;當(dāng)時,當(dāng)變化時,,變化情況如下表:10單調(diào)遞增單調(diào)遞減∴當(dāng)時,取得最大值,,∴.∴的取值范圍是.本題主要考查了利
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 參加涉密培訓(xùn)承諾書范文范本
- 2025-2030全球止吠項(xiàng)圈行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球新能源車和充電樁高壓直流繼電器行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國消費(fèi)后回收 (PCR) 薄膜行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球可回收金屬瓶蓋和封口行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國平板電動貨車行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國制冷空調(diào)熱力膨脹閥行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球電動門遙控器行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球高精度事件計時器行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國相機(jī)腕帶行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 《隧道工程》(第二版)課件 第1、2章 緒論、隧道工程勘測
- 設(shè)計師績效考核
- 西方政治思想史(全)
- 寒假計劃表作息時間安排表
- 高考日語基礎(chǔ)歸納總結(jié)與練習(xí)(一輪復(fù)習(xí))
- 煤場用車輛倒運(yùn)煤的方案
- 《預(yù)防犯罪》課件
- 【企業(yè)作業(yè)成本在上海汽車集團(tuán)中的應(yīng)用研究案例7300字(論文)】
- 《民航服務(wù)溝通技巧》教案第6課巧妙化解沖突
- 化學(xué)用語專項(xiàng)訓(xùn)練
評論
0/150
提交評論