版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
"【備戰(zhàn)】高考數(shù)學(xué)6年高考母題精解精析專題10圓錐曲線10理"(江蘇卷)18、(本小題滿分16分)在平面直角坐標(biāo)系中,如圖,已知橢圓的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F。設(shè)過點(diǎn)T()的直線TA、TB與橢圓分別交于點(diǎn)M、,其中m>0,。(1)設(shè)動點(diǎn)P滿足,求點(diǎn)P的軌跡;(2)設(shè),求點(diǎn)T的坐標(biāo);(3)設(shè),求證:直線MN必過x軸上的一定點(diǎn)(其坐標(biāo)與m無關(guān))。(2)將分別代入橢圓方程,以及得:M(2,)、N(,)直線MTA方程為:,即,直線NTB方程為:,即。聯(lián)立方程組,解得:,所以點(diǎn)T的坐標(biāo)為。(方法一)當(dāng)時,直線MN方程為:令,解得:。此時必過點(diǎn)D(1,0);當(dāng)時,直線MN方程為:,與x軸交點(diǎn)為D(1,0)。所以直線MN必過x軸上的一定點(diǎn)D(1,0)。(方法二)若,則由及,得,此時直線MN的方程為,過點(diǎn)D(1,0)。若,則,直線MD的斜率,直線ND的斜率,得,所以直線MN過D點(diǎn)。因此,直線MN必過軸上的點(diǎn)(1,0)。(福建理數(shù))17.(本小題滿分13分)已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn)。(1)求橢圓C的方程;(2)是否存在平行于OA的直線,使得直線與橢圓C有公共點(diǎn),且直線OA與的距離等于4?若存在,求出直線的方程;若不存在,請說明理由?!久}意圖】本小題主要考查直線、橢圓等基礎(chǔ)知識,考查運(yùn)算求解能力、推理論證能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想。
【解析】(1)依題意,可設(shè)橢圓C的方程為,且可知左焦點(diǎn)為【年高考試題】7.(·山東理)設(shè)雙曲線的一條漸近線與拋物線y=x+1只有一個公共點(diǎn),則雙曲線的離心率為().A.B.5C.D.11.(·安徽理)下列曲線中離心率為的是(A)(B)(C)(D)[解析]由得,選B15.(·寧夏海南理)雙曲線-=1的焦點(diǎn)到漸近線的距離為(A)(B)2(C)(D)1解析:雙曲線-=1的焦點(diǎn)(4,0)到漸近線的距離為,選A16.(·天津理)設(shè)拋物線=2x的焦點(diǎn)為F,過點(diǎn)M(,0)的直線與拋物線相交于A,B兩點(diǎn),與拋物線的準(zhǔn)線相交于C,=2,則BCF與ACF的面積之比=(A)(B)(C)(D)【考點(diǎn)定位】本小題考查拋物線的性質(zhì)、三點(diǎn)共線的坐標(biāo)關(guān)系,和綜合運(yùn)算數(shù)學(xué)的能力,中檔題。19.(··浙江理)過雙曲線的右頂點(diǎn)作斜率為的直線,該直線與雙曲線的兩條漸近線的交點(diǎn)分別為.若,則雙曲線的離心率是()A.B.C.D.答案:C解析:對于,則直線方程為,直線與兩漸近線的交點(diǎn)為B,C,,則有,因.12.(·寧夏海南理)設(shè)已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為F(1,0),直線l與拋物線C相交于A,B兩點(diǎn)。若AB的中點(diǎn)為(2,2),則直線的方程為_____________.13.(·天津理)若圓與圓(a>0)的公共弦的長為,則___________?!究键c(diǎn)定位】本小題考查圓與圓的位置關(guān)系,基礎(chǔ)題。解析:由知的半徑為,由圖可知解之得14.(·江蘇)如圖,在平面直角坐標(biāo)系中,為橢圓的四個頂點(diǎn),為其右焦點(diǎn),直線與直線相交于點(diǎn)T,線段與橢圓的交點(diǎn)恰為線段的中點(diǎn),則該橢圓的離心率為.15.(·廣東理)巳知橢圓的中心在坐標(biāo)原點(diǎn),長軸在軸上,離心率為,且上一點(diǎn)到的兩個焦點(diǎn)的距離之和為12,則橢圓的方程為.解析:,,,,則所求橢圓方程為.18.(·遼寧理)以知F是雙曲線的左焦點(diǎn),是雙曲線右支上的動點(diǎn),則的最小值為。12.(·浙江理)(本題滿分15分)已知橢圓:的右頂點(diǎn)為,過的焦點(diǎn)且垂直長軸的弦長為.(I)求橢圓的方程;(II)設(shè)點(diǎn)在拋物線:上,在點(diǎn)處的切線與交于點(diǎn).當(dāng)線段的中點(diǎn)與的中點(diǎn)的橫坐標(biāo)相等時,求的最小值.設(shè)線段MN的中點(diǎn)的橫坐標(biāo)是,則,設(shè)線段PA的中點(diǎn)的橫坐標(biāo)是,則,由題意得,即有,其中的或;當(dāng)時有,因此不等式不成立;因此,當(dāng)時代入方程得,將代入不等式成立,因此的最小值為1.14.(·江蘇)(本題滿分10分)在平面直角坐標(biāo)系中,拋物線C的頂點(diǎn)在原點(diǎn),經(jīng)過點(diǎn)A(2,2),其焦點(diǎn)F在軸上。(1)求拋物線C的標(biāo)準(zhǔn)方程;(2)求過點(diǎn)F,且與直線OA垂直的直線的方程;(3)設(shè)過點(diǎn)的直線交拋物線C于D、E兩點(diǎn),ME=2DM,記D和E兩點(diǎn)間的距離為,求關(guān)于的表達(dá)式。解析:[必做題]本小題主要考查直線、拋物線及兩點(diǎn)間的距離公式等基本知識,考查運(yùn)算求解能力。滿分10分。15.(·山東理)(本小題滿分14分)設(shè)橢圓E:(a,b>0)過M(2,),N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),(I)求橢圓E的方程;(II)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點(diǎn)A,B,且?若存在,寫出該圓的方程,并求|AB|的取值范圍,若不存在說明理由。(2)假設(shè)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點(diǎn)A,B,且,設(shè)該圓的切線方程為解方程組得,即,則△=,即,因為,所以,,【命題立意】:本題屬于探究是否存在的問題,主要考查了橢圓的標(biāo)準(zhǔn)方程的確定,直線與橢圓的位置關(guān)系直線與圓的位置關(guān)系和待定系數(shù)法求方程的方法,能夠運(yùn)用解方程組法研究有關(guān)參數(shù)問題以及方程的根與系數(shù)關(guān)系.17.(·廣東理)(本小題滿分14分)已知曲線與直線交于兩點(diǎn)和,且.記曲線在點(diǎn)和點(diǎn)之間那一段與線段所圍成的平面區(qū)域(含邊界)為.設(shè)點(diǎn)是上的任一點(diǎn),且點(diǎn)與點(diǎn)和點(diǎn)均不重合.(1)若點(diǎn)是線段的中點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 銀行大樓物業(yè)合同范例
- 租房鋪面出租合同范例
- 高校保安勞務(wù)合同范例
- 深圳地鐵供貨合同范例
- 胰腺癌術(shù)后的護(hù)理
- 拆遷收房合同范例
- 代管裝修工地合同范例
- 刷墻工合同范例
- 關(guān)于維保合同范例
- 海運(yùn)月結(jié)合同范例
- 2023-2024學(xué)年江蘇省昆山市小學(xué)數(shù)學(xué)五年級上冊期末模考試題
- 江蘇市政工程計價表定額計算規(guī)則
- 外國文學(xué)史期末考試題庫(含答案)
- GB/T 32218-2015真空技術(shù)真空系統(tǒng)漏率測試方法
- GB/T 22520-2008厚度指示表
- DB32-T 4416-2022《高延性纖維增強(qiáng)水泥基復(fù)合材料加固砌體結(jié)構(gòu)應(yīng)用技術(shù)規(guī)程》
- 新修訂蘇教版小學(xué)語文新課程標(biāo)準(zhǔn)
- aps審核交換證明中英模版
- 田字格模版內(nèi)容
- 股骨髁上骨折診治(ppt)課件
- 高頻焊接操作技術(shù)規(guī)范
評論
0/150
提交評論