江蘇省鎮(zhèn)江外國語學(xué)校2021-2022學(xué)年中考數(shù)學(xué)押題試卷含解析_第1頁
江蘇省鎮(zhèn)江外國語學(xué)校2021-2022學(xué)年中考數(shù)學(xué)押題試卷含解析_第2頁
江蘇省鎮(zhèn)江外國語學(xué)校2021-2022學(xué)年中考數(shù)學(xué)押題試卷含解析_第3頁
江蘇省鎮(zhèn)江外國語學(xué)校2021-2022學(xué)年中考數(shù)學(xué)押題試卷含解析_第4頁
江蘇省鎮(zhèn)江外國語學(xué)校2021-2022學(xué)年中考數(shù)學(xué)押題試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省鎮(zhèn)江外國語學(xué)校2021-2022學(xué)年中考數(shù)學(xué)押題試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠12.如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點E是△ABC的內(nèi)心,過點E作EF∥AB交AC于點F,則EF的長為()A. B. C. D.3.如圖所示,是用直尺和圓規(guī)作一個角等于已知角的示意圖,則說明∠A′O′B′=∠AOB的依據(jù)是()A.SAS B.SSS C.AAS D.ASA4.從邊長為的大正方形紙板中挖去一個邊長為的小正方形紙板后,將其裁成四個相同的等腰梯形(如圖甲),然后拼成一個平行四邊形(如圖乙)。那么通過計算兩個圖形陰影部分的面積,可以驗證成立的公式為()A. B.C. D.5.下列各數(shù)3.1415926,,,,,中,無理數(shù)有()A.2個 B.3個 C.4個 D.5個6.已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數(shù)是()A.8B.9C.10D.117.如圖,是的直徑,弦,垂足為點,點是上的任意一點,延長交的延長線于點,連接.若,則等于()A. B. C. D.8.關(guān)于x的一元二次方程x2﹣2x+k+2=0有實數(shù)根,則k的取值范圍在數(shù)軸上表示正確的是()A. B.C. D.9.如圖,直線y=34x+3交x軸于A點,將一塊等腰直角三角形紙板的直角頂點置于原點O,另兩個頂點M、N恰落在直線y=3A.17 B.16 C.110.一元二次方程3x2-6x+4=0根的情況是A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根 C.有兩個實數(shù)根 D.沒有實數(shù)根11.如圖所示,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,則BD兩點間的距離為()A.2 B. C. D.12.如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為30海里的A處,輪船沿正南方向航行一段時間后,到達(dá)位于燈塔P的南偏東30°方向上的B處,則此時輪船所在位置B與燈塔P之間的距離為()A.60海里 B.45海里 C.20海里 D.30海里二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點P在第一象限,⊙P與x軸交于O,A兩點,點A的坐標(biāo)為(6,0),⊙P的半徑為,則點P的坐標(biāo)為_______.14.如圖,Rt△ABC中,∠C=90°,AB=10,,則AC的長為_______.15.如圖,點D在的邊上,已知點E、點F分別為和的重心,如果,那么兩個三角形重心之間的距離的長等于________.16.雙曲線、在第一象限的圖像如圖,過y2上的任意一點A,作x軸的平行線交y1于B,交y軸于C,過A作x軸的垂線交y1于D,交x軸于E,連結(jié)BD、CE,則=.17.若不等式(a+1)x>a+1的解集是x<1,則a的取值范圍是_________.18.分解因式:ab2﹣9a=_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,作ED⊥EB交AB于點D,⊙O是△BED的外接圓.求證:AC是⊙O的切線;已知⊙O的半徑為2.5,BE=4,求BC,AD的長.20.(6分)如圖,四邊形ABCD,AD∥BC,DC⊥BC于C點,AE⊥BD于E,且DB=DA.求證:AE=CD.21.(6分)如圖①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直徑,⊙O交AC于點D,過點D的直線交BC于點E,交AB的延長線于點P,∠A=∠PDB.(1)求證:PD是⊙O的切線;(2)若AB=4,DA=DP,試求弧BD的長;(3)如圖②,點M是弧AB的中點,連結(jié)DM,交AB于點N.若tanA=12,求DN22.(8分)如圖,已知Rt△ABC中,∠C=90°,D為BC的中點,以AC為直徑的⊙O交AB于點E.(1)求證:DE是⊙O的切線;(2)若AE:EB=1:2,BC=6,求⊙O的半徑.23.(8分)計算:(﹣2018)0﹣4sin45°+﹣2﹣1.24.(10分)在“傳箴言”活動中,某班團(tuán)支部對該班全體團(tuán)員在一個月內(nèi)所發(fā)箴言條數(shù)的情況進(jìn)行了統(tǒng)計,并制成了如圖所示的兩幅不完整的統(tǒng)計圖:求該班團(tuán)員在這一個月內(nèi)所發(fā)箴言的平均條數(shù)是多少?并將該條形統(tǒng)計圖補充完整;如果發(fā)了3條箴言的同學(xué)中有兩位男同學(xué),發(fā)了4條箴言的同學(xué)中有三位女同學(xué).現(xiàn)要從發(fā)了3條箴言和4條箴言的同學(xué)中分別選出一位參加該校團(tuán)委組織的“箴言”活動總結(jié)會,請你用列表法或樹狀圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.25.(10分)已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處,如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.若△OCP與△PDA的面積比為1:4,求邊CD的長.如圖2,在(Ⅰ)的條件下,擦去折痕AO、線段OP,連接BP.動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問當(dāng)動點M、N在移動的過程中,線段EF的長度是否發(fā)生變化?若變化,說明變化規(guī)律.若不變,求出線段EF的長度.26.(12分)如圖1,將長為10的線段OA繞點O旋轉(zhuǎn)90°得到OB,點A的運動軌跡為,P是半徑OB上一動點,Q是上的一動點,連接PQ.(1)當(dāng)∠POQ=時,PQ有最大值,最大值為;(2)如圖2,若P是OB中點,且QP⊥OB于點P,求的長;(3)如圖3,將扇形AOB沿折痕AP折疊,使點B的對應(yīng)點B′恰好落在OA的延長線上,求陰影部分面積.27.(12分)先化簡,再求代數(shù)式()÷的值,其中x=sin60°,y=tan30°.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】試題分析:∵代數(shù)式有意義,∴,解得x≥0且x≠1.故選D.考點:二次根式,分式有意義的條件.2、A【解析】

過E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依據(jù)△ABC∽△GEF,即可得到EG:EF:GF,根據(jù)斜邊的長列方程即可得到結(jié)論.【詳解】過E作EG∥BC,交AC于G,則∠BCE=∠CEG.∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,設(shè)EG=4k=AG,則EF=3k=CF,F(xiàn)G=5k.∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.故選A.【點睛】本題考查了相似三角形的判定與性質(zhì),等腰三角形的性質(zhì)以及勾股定理的綜合運用,解決問題的關(guān)鍵是作輔助線構(gòu)相似三角形以及構(gòu)造等腰三角形.3、B【解析】

由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根據(jù)SSS可得到三角形全等.【詳解】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D',故選:B.【點睛】本題主要考查了全等三角形的判定,關(guān)鍵是掌握全等三角形的判定定理.4、D【解析】

分別根據(jù)正方形及平行四邊形的面積公式求得甲、乙中陰影部分的面積,從而得到可以驗證成立的公式.【詳解】陰影部分的面積相等,即甲的面積=a2﹣b2,乙的面積=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以驗證成立的公式為:a2﹣b2=(a+b)(a﹣b).故選:D.【點睛】考點:等腰梯形的性質(zhì);平方差公式的幾何背景;平行四邊形的性質(zhì).5、B【解析】

根據(jù)無理數(shù)的定義即可判定求解.【詳解】在3.1415926,,,,,中,,3.1415926,是有理數(shù),,,是無理數(shù),共有3個,故選:B.【點睛】本題主要考查了無理數(shù)的定義,其中初中范圍內(nèi)學(xué)習(xí)的無理數(shù)有:等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).6、C【解析】試題分析:已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數(shù)是360÷36=10,故選C.考點:多邊形的內(nèi)角和外角.7、B【解析】

連接BD,利用直徑得出∠ABD=65°,進(jìn)而利用圓周角定理解答即可.【詳解】連接BD,∵AB是直徑,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故選B.【點睛】此題考查圓周角定理,關(guān)鍵是利用直徑得出∠ABD=65°.8、C【解析】

由一元二次方程有實數(shù)根可知△≥0,即可得出關(guān)于k的一元一次不等式,解之即可得出k的取值范圍.【詳解】∵關(guān)于x的一元二次方程x2?2x+k+2=0有實數(shù)根,∴△=(?2)2?4(k+2)?0,解得:k??1,在數(shù)軸上表示為:故選C.【點睛】本題考查了一元二次方程根的判別式.根據(jù)一元二次方程根的情況利用根的判別式列出不等式是解題的關(guān)鍵.9、A【解析】

過O作OC⊥AB于C,過N作ND⊥OA于D,設(shè)N的坐標(biāo)是(x,34x+3),得出DN=34x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面積公式得出AO×OB=AB×OC,代入求出OC,根據(jù)sin45°=OCON,求出ON,在Rt△NDO中,由勾股定理得出(34x+3)2+(-x)2=(122【詳解】過O作OC⊥AB于C,過N作ND⊥OA于D,∵N在直線y=34∴設(shè)N的坐標(biāo)是(x,34則DN=34y=34當(dāng)x=0時,y=3,當(dāng)y=0時,x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面積公式得:AO×OB=AB×OC,∴3×4=5OC,OC=125∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=OCON∴ON=122在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(34x+3)2+(-x)2=(1225解得:x1=-8425,x2=12∵N在第二象限,∴x只能是-842534x+3=12即ND=1225,OD=84tan∠AON=NDOD故選A.【點睛】本題考查了一次函數(shù)圖象上點的坐標(biāo)特征,勾股定理,三角形的面積,解直角三角形等知識點的運用,主要考查學(xué)生運用這些性質(zhì)進(jìn)行計算的能力,題目比較典型,綜合性比較強.10、D【解析】

根據(jù)?=b2-4ac,求出?的值,然后根據(jù)?的值與一元二次方程根的關(guān)系判斷即可.【詳解】∵a=3,b=-6,c=4,∴?=b2-4ac=(-6)2-4×3×4=-12<0,∴方程3x2-6x+4=0沒有實數(shù)根.故選D.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac:當(dāng)?>0時,一元二次方程有兩個不相等的實數(shù)根;當(dāng)?=0時,一元二次方程有兩個相等的實數(shù)根;當(dāng)?<0時,一元二次方程沒有實數(shù)根.11、C【解析】解:連接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵將△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故選C.點睛:本題考查了勾股定理和旋轉(zhuǎn)的基本性質(zhì),解決此類問題的關(guān)鍵是掌握旋轉(zhuǎn)的基本性質(zhì),特別是線段之間的關(guān)系.題目整體較為簡單,適合隨堂訓(xùn)練.12、D【解析】

根據(jù)題意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的長,求出答案.【詳解】解:由題意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),

則此時輪船所在位置B處與燈塔P之間的距離為:BP=(海里)故選:D.【點睛】此題主要考查了勾股定理的應(yīng)用以及方向角,正確應(yīng)用勾股定理是解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(3,2).【解析】

過點P作PD⊥x軸于點D,連接OP,先由垂徑定理求出OD的長,再根據(jù)勾股定理求出PD的長,故可得出答案.【詳解】過點P作PD⊥x軸于點D,連接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中∵OP=OD=3,∴PD=2∴P(3,2).故答案為(3,2).【點睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.14、8【解析】

在Rt△ABC中,cosB=,AB=10,可求得BC,再利用勾股定理即可求AC的長.【詳解】∵Rt△ABC中,∠C=90°,AB=10∴cosB=,得BC=6由勾股定理得BC=故答案為8.【點睛】此題主要考查銳角三角函數(shù)在直角三形中的應(yīng)用及勾股定理.15、4【解析】

連接并延長交于G,連接并延長交于H,根據(jù)三角形的重心的概念可得,,,,即可求出GH的長,根據(jù)對應(yīng)邊成比例,夾角相等可得,根據(jù)相似三角形的性質(zhì)即可得答案.【詳解】如圖,連接并延長交于G,連接并延長交于H,∵點E、F分別是和的重心,∴,,,,∵,∴,∵,,∴,∵,∴,∴,∴,故答案為:4【點睛】本題考查了三角形重心的概念和性質(zhì)及相似三角形的判定與性質(zhì),三角形的重心是三角形中線的交點,三角形的重心到頂點的距離等于到對邊中點的距離的2倍.16、【解析】

設(shè)A點的橫坐標(biāo)為a,把x=a代入得,則點A的坐標(biāo)為(a,).∵AC⊥y軸,AE⊥x軸,∴C點坐標(biāo)為(0,),B點的縱坐標(biāo)為,E點坐標(biāo)為(a,0),D點的橫坐標(biāo)為a.∵B點、D點在上,∴當(dāng)y=時,x=;當(dāng)x=a,y=.∴B點坐標(biāo)為(,),D點坐標(biāo)為(a,).∴AB=a-=,AC=a,AD=-=,AE=.∴AB=AC,AD=AE.又∵∠BAD=∠CAD,∴△BAD∽△CAD.∴.17、a<﹣1【解析】不等式(a+1)x>a+1兩邊都除以a+1,得其解集為x<1,∴a+1<0,解得:a<?1,故答案為a<?1.點睛:本題主要考查解一元一次不等式,解答此題的關(guān)鍵是掌握不等式的性質(zhì),再不等式兩邊同加或同減一個數(shù)或式子,不等號的方向不變,在不等式的兩邊同乘或同除一個正數(shù)或式子,不等號的方向不變,在不等式的兩邊同乘或同除一個負(fù)數(shù)或式子,不等號的方向改變.18、a(b+3)(b﹣3).【解析】

根據(jù)提公因式,平方差公式,可得答案.【詳解】解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案為:a(b+3)(b﹣3).【點睛】本題考查了因式分解,一提,二套,三檢查,分解要徹底.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)BC=,AD=.【解析】分析:(1)連接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,據(jù)此得∠OEB=∠CBE,從而得出OE∥BC,進(jìn)一步即可得證;(2)證△BDE∽△BEC得,據(jù)此可求得BC的長度,再證△AOE∽△ABC得,據(jù)此可得AD的長.詳解:(1)如圖,連接OE,∵OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠CBE,∴∠OEB=∠CBE,∴OE∥BC,又∵∠C=90°,∴∠AEO=90°,即OE⊥AC,∴AC為⊙O的切線;(2)∵ED⊥BE,∴∠BED=∠C=90°,又∵∠DBE=∠EBC,∴△BDE∽△BEC,∴,即,∴BC=;∵∠AEO=∠C=90°,∠A=∠A,∴△AOE∽△ABC,∴,即,解得:AD=.點睛:本題主要考查切線的判定與性質(zhì),解題的關(guān)鍵是掌握切線的判定與性質(zhì)及相似三角形的判定與性質(zhì).20、證明見解析.【解析】

由AD∥BC得∠ADB=∠DBC,根據(jù)已知證明△AED≌△DCB(AAS),即可解題.【詳解】解:∵AD∥BC∴∠ADB=∠DBC∵DC⊥BC于點C,AE⊥BD于點E∴∠C=∠AED=90°又∵DB=DA∴△AED≌△DCB(AAS)∴AE=CD【點睛】本題考查了三角形全等的判定和性質(zhì),屬于簡單題,證明三角形全等是解題關(guān)鍵.21、(1)見解析;(2)23π;(3)【解析】

(1)連結(jié)OD;由AB是⊙O的直徑,得到∠ADB=90°,根據(jù)等腰三角形的性質(zhì)得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圓上,于是得到結(jié)論;(2)設(shè)∠A=x,則∠A=∠P=x,∠DBA=2x,在△ABD中,根據(jù)∠A+∠ABD=90o列方程求出x的值,進(jìn)而可得到∠DOB=60o,然后根據(jù)弧長公式計算即可;(3)連結(jié)OM,過D作DF⊥AB于點F,然后證明△OMN∽△FDN,根據(jù)相似三角形的性質(zhì)求解即可.【詳解】(1)連結(jié)OD,∵AB是⊙O的直徑,∴∠ADB=90o,∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,且D在圓上,∴PD是⊙O的切線.(2)設(shè)∠A=x,∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,在△ABD中,∠A+∠ABD=90o,x=2x=90o,即x=30o,∴∠DOB=60o,∴弧BD長l=60·π·2(3)連結(jié)OM,過D作DF⊥AB于點F,∵點M是的中點,∴OM⊥AB,設(shè)BD=x,則AD=2x,AB=5x=2OM,即OM=5在Rt△BDF中,DF=25由△OMN∽△FDN得DNMN【點睛】本題是圓的綜合題,考查了切線的判定,圓周角定理及其推論,三角形外角的性質(zhì),含30°角的直角三角形的性質(zhì),弧長的計算,弧弦圓心角的關(guān)系,相似三角形的判定與性質(zhì).熟練掌握切線的判定方法是解(1)的關(guān)鍵,求出∠A=30o是解(2)的關(guān)鍵,證明△OMN∽△FDN是解(3)的關(guān)鍵.22、(1)證明見解析;(1)32【解析】試題分析:(1)求出∠OED=∠BCA=90°,根據(jù)切線的判定即可得出結(jié)論;(1)求出△BEC∽△BCA,得出比例式,代入求出即可.試題解析:(1)證明:連接OE、EC.∵AC是⊙O的直徑,∴∠AEC=∠BEC=90°.∵D為BC的中點,∴ED=DC=BD,∴∠1=∠1.∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠1+∠4,即∠OED=∠ACB.∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切線;(1)由(1)知:∠BEC=90°.在Rt△BEC與Rt△BCA中,∵∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴BE:BC=BC:BA,∴BC1=BE?BA.∵AE:EB=1:1,設(shè)AE=x,則BE=1x,BA=3x.∵BC=6,∴61=1x?3x,解得:x=6,即AE=6,∴AB=36,∴AC=AB2-BC2=點睛:本題考查了切線的判定和相似三角形的性質(zhì)和判定,能求出∠OED=∠BCA和△BEC∽△BCA是解答此題的關(guān)鍵.23、.【解析】

根據(jù)零指數(shù)冪和特殊角的三角函數(shù)值進(jìn)行計算【詳解】解:原式=1﹣4×+2﹣=1﹣2+2﹣=【點睛】本題考查了實數(shù)的運算:實數(shù)的運算和在有理數(shù)范圍內(nèi)一樣,值得一提的是,實數(shù)既可以進(jìn)行加、減、乘、除、乘方運算,又可以進(jìn)行開方運算,其中正實數(shù)可以開平方.24、(1)3,補圖詳見解析;(2)【解析】

(1)總?cè)藬?shù)=3÷它所占全體團(tuán)員的百分比;發(fā)4條的人數(shù)=總?cè)藬?shù)-其余人數(shù)(2)列舉出所有情況,看恰好是一位男同學(xué)和一位女同學(xué)占總情況的多少即可【詳解】由扇形圖可以看到發(fā)箴言三條的有3名學(xué)生且占,故該班團(tuán)員人數(shù)為:(人),則發(fā)4條箴言的人數(shù)為:(人),所以本月該班團(tuán)員所發(fā)的箴言共(條),則平均所發(fā)箴言的條數(shù)是:(條).(2)畫樹形圖如下:由樹形圖可得,所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率為.【點睛】此題考查扇形統(tǒng)計圖,條形統(tǒng)計圖,列表法與樹狀圖法和扇形統(tǒng)計圖,看懂圖中數(shù)據(jù)是解題關(guān)鍵25、(1)10;(2).【解析】

(1)先證出∠C=∠D=90°,再根據(jù)∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據(jù)△OCP與△PDA的面積比為1:4,得出CP=AD=4,設(shè)OP=x,則CO=8﹣x,由勾股定理得x2=(8﹣x)2+42,求出x,最后根據(jù)AB=2OP即可求出邊AB的長;(2)作MQ∥AN,交PB于點Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的結(jié)論求出PB=,最后代入EF=PB即可得出線段EF的長度不變【詳解】(1)如圖1,∵四邊形ABCD是矩形,∴∠C=∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論