中考數(shù)學(xué)復(fù)習(xí)必考題型專訓(xùn):-二元一次方程組篇(解析版)_第1頁(yè)
中考數(shù)學(xué)復(fù)習(xí)必考題型專訓(xùn):-二元一次方程組篇(解析版)_第2頁(yè)
中考數(shù)學(xué)復(fù)習(xí)必考題型專訓(xùn):-二元一次方程組篇(解析版)_第3頁(yè)
中考數(shù)學(xué)復(fù)習(xí)必考題型專訓(xùn):-二元一次方程組篇(解析版)_第4頁(yè)
中考數(shù)學(xué)復(fù)習(xí)必考題型專訓(xùn):-二元一次方程組篇(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題09二元一次方程組

考點(diǎn)一:二元一次方程組之相關(guān)概念:

知識(shí)回顧

L二上口義:

含有兩個(gè)未知數(shù),且含有未知數(shù)的項(xiàng)的次數(shù)是1的整式方程叫做二元一次方程.

2.二元一次方程組的定義:

把兩個(gè)二元一次方程組合在一起,就組成一個(gè)二元一次方程組.

3.二元一次方程的解:

使二元一次方程左右兩邊成立的兩個(gè)未知數(shù)的值叫做二元一次方程的一組解.對(duì)于給定其中一個(gè)

未知數(shù)的值總能求出另一個(gè)未知數(shù)的值.所以二元一次方程的解成對(duì)出現(xiàn),且無(wú)數(shù)對(duì).

4.二元一次方程組的解:

二元一次方程組中兩個(gè)方程的公共解.叫做二元一次方程組的解.

微專題

1.(2022?雅安)已知〈是方程ax+by=3的解,則代數(shù)式2a+4分-5的值為_______.

b=2

【分析】把X與y的值代入方程計(jì)算得到然2b的值,原式變形后代入計(jì)算即可求出值.

【解答】解:把(“1代入ax+6y=3得:卉26=3,

1y=2

則原式=2(*28-5

=2X3-5

=6-5

=1.

故答案為:1.

X=1

2.(2021?涼山州)已知《是方程ax+y=2的解,則a的值為__________.

[y=3

【分析】把方程的解代入方程,得到關(guān)于a的一元一次方程,解方程即可.

【解答】解:把[,口代入到方程中得:/3=2,

ly=3

??~1,

故答案為:-1.

x=2

3.(2021?金華)已知《是方程3x+2y=10的一個(gè)解,則〃的值是.

y=m

【分析】把二元一次方程的解代入到方程中,得到關(guān)于力的一元一次方程,解方程即可.

【解答】解:把(x=2代入方程得:3X2+2R=10,

Iy=m

777=2,

故答案為:2.

4.(2021?浙江)已知二元一次方程X+町=14,請(qǐng)寫出該方程的一組整數(shù)解.

【分析】把y看作已知數(shù)求出x,確定出整數(shù)解即可.

【解答】解:x+3y=14,

x=14-3y,

當(dāng)y=l時(shí),x=ll,

則方程的一組整數(shù)解為1A".

Iy=l

故答案為:fx=ll(答案不唯一).

|y=l

5.(2021?臺(tái)灣)若二元一次聯(lián)立方程式1x=47y的解為x=a,尸&則K6之值為何?()

6y-x=10

A.-15B.-3C.5D.25

【分析】運(yùn)用加減消元法求出方程組的解,即可得到&6的值,再求K6即可.

【解答】解:『Ry①

l6y-x=10②

①+②得:6y=4.片10,

?*?7=5,

把尸5代入①得:x=20,

a+b=x+y=20+5=25,

故選:D.

f2x-3y=7

6.(2021?無(wú)錫)若滿足方程組17,則廣尸________.

x-^y-2

【分析】把方程組的兩個(gè)方程的左右兩邊分別相減,求出x+y的值即可.

【解答】解:色-3尸始

\x-4y=2②

①-②,可得:(2x-3y)-(x-4y)=7-2,

x+y=5.

故答案為:5.

7.(2021?遵義)已知滿足的方程組是4,,貝Ux+y的值為

、2x+3y=7

【分析】將方程組中的兩個(gè)方程直接相減即可求解.

【解答】解:(皿七巴

12x+3y=7②

②-①得,x+y=5,

故答案為5.

4-x+3y——1

8.(2021?棗莊)已知滿足方程組1',則x+p的值為—

2x+y=3

【分析】用加減消元法解二元一次方程組,然后求解.

【解答】解:方法一:,4x+3y=二①,

l2x+y=3②

①-②,得:2x+2y=-4,

x+y=-2,

故答案為:-2.

方法二:e+3丫=二①

l2x+y=3②

②X2,得:4x+2y=6③,

①-③,得:尸-7,

把尸-7代入②,得2x-7=3,

解得:x=5,

方程組的解為,

ly=-7

x+y=-2,

故答案為:-2.

考點(diǎn)二:二元一次方程組之解二元一次方程組:

勺思想:

消元思想:將方程組中的未知數(shù)由多化少,逐一解決的思想.

2.解二元一次方程組的方法:

①代入消元法:

將其中一個(gè)方程的其中一個(gè)未知數(shù)用另一個(gè)未知數(shù)表示出來(lái)代入另一個(gè)方程中,實(shí)現(xiàn)消元,進(jìn)而求

出方程組的解的方法叫做代入消元法.(通常適用于有未知數(shù)的系數(shù)是±1的方程組)

②加減消元法:

當(dāng)方程組中的兩個(gè)方程的同一個(gè)未知數(shù)的系數(shù)相同或相反時(shí),則可以利用將兩個(gè)方程相減或相加

的方法消掉這個(gè)未知數(shù)的方法叫做加減消元法.

微專題

9.(2022?株洲)對(duì)于二元一次方程組,y=x—1,將①式代入②式,消去y可以得到()

x+2y=7

A.x+2x-1=7B.x+2x-2=7C.x+x-1=7D.x+2x+2=7

【分析】將①式代入②式,得x+2(x-1)=7,去括號(hào)即可.

【解答】解:fyr-iR,將①式代入②式,

[x+2y=7②

得x+2(x-l)=7,

x+2x-2=7,

故選:B.

2x+3y=13

10.(2022?濰坊)方程組17的解為___________.

3x-2y=0

【分析】由第一個(gè)方程得4x+6尸26,由第二個(gè)方程得9x-6尸0,兩個(gè)方程相加消去y,解出x,再進(jìn)一

步解出y即可.

【解答】解:儼+3尸吧

l3x-2y=0②

由①義2得4x+6尸26③,

由②義3得9x-6y=0④,

由③+④得13x=26,

解得x=2,

將x=2代入②得3X2-2y=0,

解得尸3,

所以原方程組的解為

ly=3

故答案為:(x=2.

ly=3

x+2y=5

11.(2022?沈陽(yáng))二元一次方程組17的解是_____________.

y-2x

【分析】用代入消元法解二元一次方程組即可.

【解答】解:|'+2了不①,

ly=2x②

將②代入①,得x+4x=5,

解得x=l,

將x=l代入②,得尸2,

方程組的解為]x=l,

1y=2

故答案為:(x=1.

|y=2

3x+2y=12,

12.(2022?無(wú)錫)二元一次方程組1'的解為___________.

2x-y=l

【分析】根據(jù)代入消元法求解即可得出答案.

【解答】解:,x+2y=廿①,

l2x-y=l②

由②得:y=2x-1@,

將③代入①得:3x+2(2x-1)=12,

解得:x=2、

將x=2代入③得:y=3,

原方程組的解為,x=2.

ly=3

故答案為:(x=2.

Iy=3

x+2y=4

13.(2022?隨州)已知二元一次方程組1',則x-y的值為_________.

2x+y=5

【分析】將第一個(gè)方程化為x=4-2%并代入第二個(gè)方程中,可得2(4-2y)+尸5,解得尸1,將尸1代

入第一個(gè)方程中,可得x=2,即可求解.

【解答】解:解法一:由x+2y=4可得:

x=4-2%

代入第二個(gè)方程中,可得:

2(4-2y)+y=5,

解得:y=l,

將y=l代入第一個(gè)方程中,可得

x+2Xl=4,

解得:x=2,

*.x-y=2-1=1,

故答案為:1;

(x+2y=4?

解法二:

12x+y=5②,

由②-①可得:

x-7=1,

故答案為:L

14.(2022?安順)若a+26=8,3K46=18,則a+6的值為

【分析】直接利用已知解方程組進(jìn)而得出答案.

【解答】解:方法一、"26=8,33+46=18,

則a=8-2b,

代入3滔46=18,

解得:6=3,

則a=2,

故K6=5.

方法二、Va+2Z)=8,3a+4Z)=18,

2a+2A=10,

/.a+b=5,

故答案為:5.

考點(diǎn)三:二元一次方程組之實(shí)際應(yīng)用

知識(shí)回顧

1.列方程解實(shí)際應(yīng)用物的步驟:

①審題一一仔細(xì)審題,找出題目中的等量關(guān)系.

②設(shè)未知數(shù)一一根據(jù)問題與等量關(guān)系直接或間接設(shè)未知數(shù).

③列方程:根據(jù)等量關(guān)系與未知數(shù)列出二元一次方程.

④解方程一一按照解方程的步驟解二元一次方程.

⑤答一一檢驗(yàn)方程的解是否滿足實(shí)際情況,然后作答.

1吃(20善嗪瓢爾)勤午節(jié)前夕,某食品加工廠準(zhǔn)備將生產(chǎn)的粽子裝入月、6兩種食品盒中,/種食品盒每

盒裝8個(gè)粽子,6種食品盒每盒裝10個(gè)粽子,若現(xiàn)將200個(gè)粽子分別裝入46兩種食品盒中(兩種食品

盒均要使用并且裝滿),則不同的分裝方式有()

A.2種B.3種C.4種D.5種

【分析】根據(jù)題意列方程,求其正整數(shù)解.

【解答】解:設(shè)/種食品盒x個(gè),方種食品盒y個(gè),根據(jù)題意得:

8j+10y=200,

y=20-0.8x,

二方程的正整數(shù)解為:(X=5JX=10JX=15JX=20.

ly=16ly=12[y=8\y=4

故選:C.

16.(2022?黑龍江)國(guó)家''雙減”政策實(shí)施后,某校開展了豐富多彩的社團(tuán)活動(dòng).某班同學(xué)報(bào)名參加書法和

圍棋兩個(gè)社團(tuán),班長(zhǎng)為參加社團(tuán)的同學(xué)去商場(chǎng)購(gòu)買毛筆和圍棋(兩種都購(gòu)買)共花費(fèi)360元.其中毛筆每

支15元,圍棋每副20元,共有多少種購(gòu)買方案?()

A.5B.6C.7D.8

【分析】設(shè)購(gòu)買毛筆x支,圍棋y副,根據(jù)“購(gòu)買毛筆和圍棋(兩種都購(gòu)買)共花費(fèi)360元”列二元一次方

程,再由x和y分別取正整數(shù),即可確定購(gòu)買方案.

【解答】解:設(shè)購(gòu)買毛筆x支,圍棋y副,

根據(jù)題意,得15x+20y=360,

/.y=18--x,

4

:兩種都買,

.?.18一gx>0,x、y都是正整數(shù),

4

解得x<24,

故x是4的倍數(shù)且x<24,

x=4,y=15或x=8,y=12或x—12,y=9或x=16,y=6或x=20,y=3;

.??共有5種購(gòu)買方案,

故選:A.

17.(2022?綏化)某班為獎(jiǎng)勵(lì)在數(shù)學(xué)競(jìng)賽中成績(jī)優(yōu)異的同學(xué),花費(fèi)48元錢購(gòu)買了甲、乙兩種獎(jiǎng)品,每種獎(jiǎng)品

至少購(gòu)買1件,其中甲種獎(jiǎng)品每件4元,乙種獎(jiǎng)品每件3元.則有種購(gòu)買方案.

【分析】設(shè)購(gòu)買X件甲種獎(jiǎng)品,y件乙種獎(jiǎng)品,利用總價(jià)=單價(jià)義數(shù)量,即可得出關(guān)于的二元一次方

程,結(jié)合x,y均為正整數(shù),即可得出共有3種購(gòu)買方案.

【解答】解:設(shè)購(gòu)買x件甲種獎(jiǎng)品,y件乙種獎(jiǎng)品,

依題意得:4x+3y=48,

..x12-斗.

4

又均為正整數(shù),

x=9-x=6-x=3

或或

y=4y=8y=12,

,共有3種購(gòu)買方案.

故答案為:3.

18.(2022?日照)《孫子算經(jīng)》是中國(guó)傳統(tǒng)數(shù)學(xué)的重要著作,其中有一道題,原文是:“今有木,不知長(zhǎng)短,引

繩度之,余繩四尺五寸;屈繩量之,不足一尺.木長(zhǎng)幾何?”意思是:用一根繩子去量一根木頭的長(zhǎng),繩子

還剩余4.5尺;將繩子對(duì)折再量木頭,則木頭還剩余1尺,問木頭長(zhǎng)多少尺?可設(shè)木頭長(zhǎng)為x尺,繩子長(zhǎng)為

y尺,則所列方程組正確的是()

y-x=4.5x—y=4.5

A.《B.《

2x-y=l2x-y=\

x-y=4.5y—x=4.5

C.《D.《

-V-------Xr—-1Lx-2=i

122

【分析】設(shè)木頭長(zhǎng)為x尺,繩子長(zhǎng)為y尺,根據(jù)“用一根繩子去量一根木頭的長(zhǎng),繩子還剩余4.5尺;將繩

子對(duì)折再量木頭,則木頭還剩余1尺”,即可得出關(guān)于X,y的二元一次方程組,此題得解.

【解答】解:設(shè)木頭長(zhǎng)為x尺,繩子長(zhǎng)為y尺,

y-x=4.5

由題意可得《

x-f=l

故選:D.

19.(2022?通遼)《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)重要的著作,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架,其中《盈不

足》卷記載了一道有趣的數(shù)學(xué)問題:"今有共買物,人出八,盈三;人出七,不足四.問人數(shù)、物價(jià)各幾

何?”譯文:"今有人合伙購(gòu)物,每人出8錢,會(huì)多出3錢;每人出7錢,又差4錢.問人數(shù)、物價(jià)各多

少?”設(shè)人數(shù)為x人,物價(jià)為y錢,根據(jù)題意,下面所列方程組正確的是()

Sx-3=y8x+3=y

7%—4=y7x+4=y

Sx-3=y8x+3=y

7x+4=y7x-4=y

【分析】根據(jù)〃每人出8錢,會(huì)多出3錢;每人出7錢,又差4錢”,即可得出關(guān)于的二元一次方程組,

此題得解.

【解答】解:依題意得:[8x-3=y.

7x+4=y

故選:C.

20.(2022?深圳)張三經(jīng)營(yíng)了一家草場(chǎng),草場(chǎng)里面種植有上等草和下等草.他賣五捆上等草的根數(shù)減去11

根,就等于七捆下等草的根數(shù);賣七捆上等草的根數(shù)減去25根,就等于五捆下等草的根數(shù).設(shè)上等草一捆

為x根,下等草一捆為了根,則下列方程正確的是()

5y-ll=7%5y+ll=7x

ly-25=5x7y+25=5x

5x-ll=7y7x-ll=5y

7x-25=5y5x-25=7y

【分析】設(shè)上等草一捆為X根,下等草一捆為y根,利用已知〃他賣五捆上等草的根數(shù)減去11根,就等于

七捆下等草的根數(shù);賣七捆上等草的根數(shù)減去25根,就等于五捆下等草的根數(shù)”分別得出等量關(guān)系求出

答案.

【解答】解:設(shè)上等草一捆為x根,下等草一捆為y根,

根據(jù)題意可列方程組為:J5x_11=7y.

7x-25=5y

故選:C.

21.(2022?畢節(jié)市)中國(guó)清代算書《御制數(shù)理精蘊(yùn)》中有這樣一題:〃馬四匹、牛六頭,共價(jià)四十八兩(我國(guó)

古代貨幣單位);馬三匹、牛五頭,共價(jià)三十八兩.問馬、牛各價(jià)幾何?”設(shè)馬每匹x兩,牛每頭p兩,根據(jù)

題意可列方程組為()

6x+4y=486x+4y=38

5x+3y=385x+3y=48

4x+6y=484x+6y=38

3x+5y=383x+5y=48

【分析】利用總價(jià)=單價(jià)X數(shù)量,結(jié)合〃馬四匹、牛六頭,共價(jià)四十八兩;馬三匹、牛五頭,共價(jià)三十八

兩”,即可得出關(guān)于的二元一次方程組,解之即可得出結(jié)論.

【解答】解:?.?馬四匹、牛六頭,共價(jià)四十八兩,

4x+6p=48;

??,馬三匹、牛五頭,共價(jià)三十八兩,

.??3x+5p=38.

可列方程組為e+6丫=48.故選:c

13x+5y=38

22.(2022?湘潭)為培養(yǎng)青少年的創(chuàng)新意識(shí)、動(dòng)手實(shí)踐能力、現(xiàn)場(chǎng)應(yīng)變能力和團(tuán)隊(duì)精神,湘潭市舉辦了第10

屆青少年機(jī)器人競(jìng)賽.組委會(huì)為每個(gè)比賽場(chǎng)地準(zhǔn)備了四條腿的桌子和三條腿的凳子共12個(gè),若桌子腿數(shù)

與凳子腿數(shù)的和為40條,則每個(gè)比賽場(chǎng)地有幾張桌子和幾條凳子?設(shè)有x張桌子,有y條凳子,根據(jù)題意

所列方程組正確的是(

x+y=40x+y=12

A.4B.4

4x+3y=124%+3y=40

x+y=40x+y=12

c.《D.《

3x+4y=123%+4y=40

【分析】根據(jù)〃組委會(huì)為每個(gè)比賽場(chǎng)地準(zhǔn)備了四條腿的桌子和三條腿的凳子共12個(gè),且桌子腿數(shù)與凳子

腿數(shù)的和為40條”,即可得出關(guān)于x,y的二元一次方程組,此題得解.

【解答】解:??,組委會(huì)為每個(gè)比賽場(chǎng)地準(zhǔn)備了桌子和凳子共12個(gè),

J.x+y=12]

又??,桌子腿數(shù)與凳子腿數(shù)的和為40條,且每張桌子有4條腿,每條凳子有3條腿,

4戶3y=40.

列出的方程組為[,蛇口?

4x+3y=40

故選:B.

23.(2022?嘉興)"市長(zhǎng)杯"青少年校園足球聯(lián)賽的比賽規(guī)則是:勝一場(chǎng)得3分,平一場(chǎng)得1分,負(fù)一場(chǎng)得0

分.某校足球隊(duì)在第一輪比賽中賽了9場(chǎng),只負(fù)了2場(chǎng),共得17分.那么該隊(duì)勝了幾場(chǎng),平了幾場(chǎng)?設(shè)該

隊(duì)勝了x場(chǎng),平了y場(chǎng),根據(jù)題意可列方程組為()

x+y=7[x+y=9

A.]B,J.

3x+y=ll[3x+y=17

%+y=7x+y=9

c.D.

x+3y=17x+3y=17

【分析】由題意:勝一場(chǎng)得3分,平一場(chǎng)得1分,負(fù)一場(chǎng)得0分.某校足球隊(duì)在第一輪比賽中賽了9場(chǎng),

只負(fù)了2場(chǎng),共得17分.列出二元一次方程組即可.

x+y=9-2

【解答】解:根據(jù)題意得:

3x+y=17

x+y=7

3x+y=17

故選:A.

24.(2022?揚(yáng)州)《孫子算經(jīng)》是我國(guó)古代經(jīng)典數(shù)學(xué)名著,其中有一道〃雞兔同籠”問題:〃今有雞兔同籠,

上有三十五頭,下有九十四足.問雞兔各幾何?”學(xué)了方程(組)后,我們可以非常順捷地解決這個(gè)問

題.如果設(shè)雞有X只,兔有P只,那么可列方程組為()

x+y=35%+y=35

A.4B.《

4x+4y=944x+2y=94

%+y=94y=35

C.《D.4

、2x+4y=352%+4y=94

【分析】關(guān)系式為:雞的只數(shù)+兔的只數(shù)=35;2X雞的只數(shù)+4義兔的只數(shù)=94,把相關(guān)數(shù)值代入即可求

解.

【解答】解:設(shè)雞有x只,兔有p只,可列方程組為:

x+y=35

I2x+4y=94

故選:D.

25.(2022?寧波)我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中記載:〃粟米之法:粟率五十;斯米三十.今有米在十

斗桶中,不知其數(shù).滿中添粟而舂之,得米七斗.問故米幾何?”意思為:50斗谷子能出30斗米,即出米

率為旦.今有米在容量為10斗的桶中,但不知道數(shù)量是多少.再向桶中加滿谷子,再舂成米,共得米7

5

斗.問原來(lái)有米多少斗?如果設(shè)原來(lái)有米X斗,向桶中加谷子P斗,那么可列方程組為()

x+y=10x+y=10

A.4B.4

3「3)

x+—y=7—x+y=/

515,

x+y=7x+y=7

D.J5

5

x+—y=10丁+y=10

13,

【分析】根據(jù)原來(lái)的米+向桶中加的谷子=10,原來(lái)的米+桶中的谷子舂成米=7即可得出答案.

x+y=10

【解答】解:根據(jù)題意得:.3,

x+T-y=7

D

故選:A.

26.(2022?宜昌)五一小長(zhǎng)假,小華和家人到公園游玩.湖邊有大小兩種游船.小華發(fā)現(xiàn)1艘大船與2艘小

船一次共可以滿載游客32人,2艘大船與1艘小船一次共可以滿載游客46人.則1艘大船與1艘小船

一次共可以滿載游客的人數(shù)為()

A.30B.26C.24D.22

【分析】設(shè)1艘大船可載x人,1艘小船可載y人,依題意:1艘大船與2艘小船一次共可以滿載游客32

人,2艘大船與1艘小船一次共可以滿載游客46人.列出二元一次方程組,求出x+y的值即可.

【解答】解:設(shè)1艘大船可載x人,1艘小船可載y人,

依題意得:卜+2y=322

I2x+y=46②

①+②得:3x+3y=78,

jr+y=26,

即1艘大船與1艘小船一次共可以滿載游客的人數(shù)為26,

故選:B.

27.(2022?武漢)幻方是古老的數(shù)學(xué)問題,我國(guó)古代的《洛書》中記載了最早的幻方一一九宮格.將9個(gè)數(shù)

填入幻方的空格中,要求每一橫行、每一豎列以及兩條對(duì)角線上的3個(gè)數(shù)之和相等,例如圖⑴就是一個(gè)

幻方.圖⑵是一個(gè)未完成的幻方,則x與y的和是()

A.9B.10C.11D.12

【分析】由題意:每一橫行、每一豎列以及兩條對(duì)角線上的3個(gè)數(shù)之和相等,表示出最中間的數(shù)和最右

下角的數(shù),列出二元一次方程組,解方程組即可.

【解答】解:???每一橫行、每一豎列以及兩條對(duì)角線上的3個(gè)數(shù)之和相等,

最左下角的數(shù)為:6+20-22=4,

.?.最中間的數(shù)為:x+6-4=戶2,或x+6+20-22-y—x-y+4,

最右下角的數(shù)為:6+20-(x+2)=24-x,或x+6-y=x-p+6,

.(x+2=x-y+4

124-x=x-y+6

解得:卜=10,

ly=2

.'.x+y=12,

故選:D.

28.(2022?棗莊)《九章算術(shù)》是人類科學(xué)史上應(yīng)用數(shù)學(xué)的"算經(jīng)之首”,其書中卷八方程[七]中記載:”今

有牛五、羊二,直金十兩.牛二、羊五,直金八兩.牛、羊各直金幾何?”題目大意是:”5頭牛、2只羊

共值金10兩.2頭牛、5只羊共值金8兩,每頭牛、每只羊各值金多少兩?”根據(jù)題意,可求得1頭牛和

1只羊共值金兩.

【分析】設(shè)每頭牛x兩,每只羊y兩,根據(jù)5頭牛、2只羊共值金10兩.2頭牛、5只羊共值金8兩,列

二元一次方程組,兩方程相加可得7x+7y=18,進(jìn)一步求解即可.

【解答】解:設(shè)每頭牛x兩,每只羊y兩,

根據(jù)題意,可得儼+2y=io

I2x+5y=8

;.7x+7尸18,

.一18

..x+y=—,

頭牛和1只羊共值金」區(qū)兩,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論