版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省廣元市旺蒼縣2022年中考數(shù)學考試模擬沖刺卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列計算結(jié)果正確的是()A. B.C. D.2.如圖,已知點A(0,1),B(0,﹣1),以點A為圓心,AB為半徑作圓,交x軸的正半軸于點C,則∠BAC等于()A.90° B.120° C.60° D.30°3.計算(ab2)3的結(jié)果是()A.a(chǎn)b5 B.a(chǎn)b6 C.a(chǎn)3b5 D.a(chǎn)3b64.下列計算,結(jié)果等于a4的是()A.a(chǎn)+3aB.a(chǎn)5﹣aC.(a2)2D.a(chǎn)8÷a25.一個盒子內(nèi)裝有大小、形狀相同的四個球,其中紅球1個、綠球1個、白球2個,小明摸出一個球不放回,再摸出一個球,則兩次都摸到白球的概率是()A. B. C. D.6.如圖,AB是⊙O的直徑,弦CD⊥AB于E,∠CDB=30°,⊙O的半徑為,則弦CD的長為()A. B.3cm C. D.9cm7.某圓錐的主視圖是一個邊長為3cm的等邊三角形,那么這個圓錐的側(cè)面積是()A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm28.的值為()A. B.- C.9 D.-99.“射擊運動員射擊一次,命中靶心”這個事件是()A.確定事件B.必然事件C.不可能事件D.不確定事件10.如圖所示的四張撲克牌背面完全相同,洗勻后背面朝上,則從中任意翻開一張,牌面數(shù)字是3的倍數(shù)的概率為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,半徑為1的半圓形紙片,按如圖方式折疊,使對折后半圓弧的中點M與圓心O重合,則圖中陰影部分的面積是________.12.若點A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函數(shù)y=(k為常數(shù))的圖象上,則y1、y2、y3的大小關(guān)系為________.13.已知關(guān)于x的方程1-xx-214.如圖,在平面直角坐標系中,點A是拋物線y=a(x+)2+k與y軸的交點,點B是這條拋物線上的另一點,且AB∥x軸,則以AB為邊的正方形ABCD的周長為_____.15.在函數(shù)y=x-4中,自變量x的取值范圍是_____.16.一個不透明的口袋中有2個紅球,1個黃球,1個白球,每個球除顏色不同外其余均相同.小溪同學從口袋中隨機取出兩個小球,則小溪同學取出的是一個紅球、一個白球的概率為_____.17.如圖,在Rt△ABC中,∠C=90°,AB=5,BC=3,點P、Q分別在邊BC、AC上,PQ∥AB,把△PCQ繞點P旋轉(zhuǎn)得到△PDE(點C、Q分別與點D、E對應(yīng)),點D落在線段PQ上,若AD平分∠BAC,則CP的長為_________.三、解答題(共7小題,滿分69分)18.(10分)已知:如圖,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.求:(1)求∠CDB的度數(shù);(2)當AD=2時,求對角線BD的長和梯形ABCD的面積.19.(5分)在平面直角坐標系中,拋物線經(jīng)過點A(-1,0)和點B(4,5).(1)求該拋物線的函數(shù)表達式.(2)求直線AB關(guān)于x軸對稱的直線的函數(shù)表達式.(3)點P是x軸上的動點,過點P作垂直于x軸的直線l,直線l與該拋物線交于點M,與直線AB交于點N.當PM<PN時,求點P的橫坐標的取值范圍.20.(8分)已如:⊙O與⊙O上的一點A(1)求作:⊙O的內(nèi)接正六邊形ABCDEF;(要求:尺規(guī)作圖,不寫作法但保留作圖痕跡)(2)連接CE,BF,判斷四邊形BCEF是否為矩形,并說明理由.21.(10分)如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作發(fā)現(xiàn)如圖1,固定△ABC,使△DEC繞點C旋轉(zhuǎn).當點D恰好落在BC邊上時,填空:線段DE與AC的位置關(guān)系是;②設(shè)△BDC的面積為S1,△AEC的面積為S1.則S1與S1的數(shù)量關(guān)系是.猜想論證當△DEC繞點C旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中S1與S1的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想.拓展探究已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,OE∥AB交BC于點E(如圖4),若在射線BA上存在點F,使S△DCF=S△BDC,請直接寫出相應(yīng)的BF的長22.(10分)列方程解應(yīng)用題:某商場用8萬元購進一批新款襯衫,上架后很快銷售一空,商場又緊急購進第二批這種襯衫,數(shù)量是第一次的2倍,但進價漲了4元/件,結(jié)果共用去17.6萬元.該商場第一批購進襯衫多少件?商場銷售這種襯衫時,每件定價都是58元,剩至150件時按八折出售,全部售完.售完這兩批襯衫,商場共盈利多少元?23.(12分)已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=40°.(1)如圖1,若D為弧AB的中點,求∠ABC和∠ABD的度數(shù);(2)如圖2,過點D作⊙O的切線,與AB的延長線交于點P,若DP∥AC,求∠OCD的度數(shù).24.(14分)如圖,點O為Rt△ABC斜邊AB上的一點,以O(shè)A為半徑的⊙O與BC切于點D,與AC交于點E,連接AD.求證:AD平分∠BAC;若∠BAC=60°,OA=4,求陰影部分的面積(結(jié)果保留π).
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
利用冪的乘方、同底數(shù)冪的乘法、合并同類項及零指數(shù)冪的定義分別計算后即可確定正確的選項.【詳解】A、原式,故錯誤;B、原式,故錯誤;C、利用合并同類項的知識可知該選項正確;D、,,所以原式無意義,錯誤,故選C.【點睛】本題考查了冪的運算性質(zhì)及特殊角的三角函數(shù)值的知識,解題的關(guān)鍵是能夠利用有關(guān)法則進行正確的運算,難度不大.2、C【解析】解:∵A(0,1),B(0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt△AOC中,cos∠BAC==,∴∠BAC=60°.故選C.點睛:本題考查了垂徑定理的應(yīng)用,關(guān)鍵是求出AC、OA的長.解題時注意:垂直弦的直徑平分這條弦,并且平分弦所對的兩條弧.3、D【解析】試題分析:根據(jù)積的乘方的性質(zhì)進行計算,然后直接選取答案即可.試題解析:(ab2)3=a3?(b2)3=a3b1.故選D.考點:冪的乘方與積的乘方.4、C【解析】
根據(jù)同底數(shù)冪的除法法則:底數(shù)不變,指數(shù)相減;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;冪的乘方法則:底數(shù)不變,指數(shù)相乘進行計算即可.【詳解】A.a(chǎn)+3a=4a,錯誤;B.a(chǎn)5和a不是同類項,不能合并,故此選項錯誤;C.(a2)2=a4,正確;D.a(chǎn)8÷a2=a6,錯誤.故選C.【點睛】本題主要考查了同底數(shù)冪的乘除法,以及冪的乘方,關(guān)鍵是正確掌握計算法則.5、C【解析】
畫樹狀圖求出共有12種等可能結(jié)果,符合題意得有2種,從而求解.【詳解】解:畫樹狀圖得:∵共有12種等可能的結(jié)果,兩次都摸到白球的有2種情況,∴兩次都摸到白球的概率是:.故答案為C.【點睛】本題考查畫樹狀圖求概率,掌握樹狀圖的畫法準確求出所有的等可能結(jié)果及符合題意的結(jié)果是本題的解題關(guān)鍵.6、B【解析】
解:∵∠CDB=30°,∴∠COB=60°,又∵OC=,CD⊥AB于點E,∴,解得CE=cm,CD=3cm.故選B.考點:1.垂徑定理;2.圓周角定理;3.特殊角的三角函數(shù)值.7、A【解析】
根據(jù)已知得出圓錐的底面半徑及母線長,那么利用圓錐的側(cè)面積=底面周長×母線長÷2求出即可.【詳解】∵圓錐的軸截面是一個邊長為3cm的等邊三角形,∴底面半徑=1.5cm,底面周長=3πcm,∴圓錐的側(cè)面積=12×3π×3=4.5πcm2故選A.【點睛】此題主要考查了圓錐的有關(guān)計算,關(guān)鍵是利用圓錐的側(cè)面積=底面周長×母線長÷2得出.8、A【解析】【分析】根據(jù)絕對值的意義進行求解即可得.【詳解】表示的是的絕對值,數(shù)軸上表示的點到原點的距離是,即的絕對值是,所以的值為,故選A.【點睛】本題考查了絕對值的意義,熟練掌握絕對值的意義是解題的關(guān)鍵.9、D【解析】試題分析:“射擊運動員射擊一次,命中靶心”這個事件是隨機事件,屬于不確定事件,故選D.考點:隨機事件.10、C【解析】
根據(jù)題意確定所有情況的數(shù)目,再確定符合條件的數(shù)目,根據(jù)概率的計算公式即可.【詳解】解:由題意可知,共有4種情況,其中是3的倍數(shù)的有6和9,∴是3的倍數(shù)的概率,故答案為:C.【點睛】本題考查了概率的計算,解題的關(guān)鍵是熟知概率的計算公式.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】試題解析:如圖,連接OM交AB于點C,連接OA、OB,由題意知,OM⊥AB,且OC=MC=1,在RT△AOC中,∵OA=2,OC=1,∴cos∠AOC=,AC=∴∠AOC=60°,AB=2AC=2,∴∠AOB=2∠AOC=120°,則S弓形ABM=S扇形OAB-S△AOB==,S陰影=S半圓-2S弓形ABM=π×22-2()=2.故答案為2.12、y2<y1<y2【解析】分析:設(shè)t=k2﹣2k+2,配方后可得出t>1,利用反比例函數(shù)圖象上點的坐標特征可求出y1、y2、y2的值,比較后即可得出結(jié)論.詳解:設(shè)t=k2﹣2k+2,∵k2﹣2k+2=(k﹣1)2+2>1,∴t>1.∵點A(﹣2,y1)、B(﹣1,y2)、C(1,y2)都在反比例函數(shù)y=(k為常數(shù))的圖象上,∴y1=﹣,y2=﹣t,y2=t,又∵﹣t<﹣<t,∴y2<y1<y2.故答案為:y2<y1<y2.點睛:本題考查了反比例函數(shù)圖象上點的坐標特征,利用反比例函數(shù)圖象上點的坐標特征求出y1、y2、y2的值是解題的關(guān)鍵.13、k≠1【解析】試題分析:因為1-xx-2+2=k2-x,所以1-x+2(x-2)=-k,所以1-x+2x-4=-k,所以x=3-k,所以x=3-k,因為原方程有解,所以考點:分式方程.14、1【解析】
根據(jù)題意和二次函數(shù)的性質(zhì)可以求得線段AB的長度,從而可以求得正方形ABCD的周長.【詳解】∵在平面直角坐標系中,點A是拋物線y=a(x+)2+k與y軸的交點,∴點A的橫坐標是0,該拋物線的對稱軸為直線x=﹣,∵點B是這條拋物線上的另一點,且AB∥x軸,∴點B的橫坐標是﹣3,∴AB=|0﹣(﹣3)|=3,∴正方形ABCD的周長為:3×4=1,故答案為:1.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征、正方形的性質(zhì),解題的關(guān)鍵是找出所求問題需要的條件.15、x≥4【解析】試題分析:二次根式有意義的條件:二次根號下的數(shù)為非負數(shù),二次根式才有意義.由題意得,.考點:二次根式有意義的條件點評:本題屬于基礎(chǔ)應(yīng)用題,只需學生熟練掌握二次根式有意義的條件,即可完成.16、【解析】
先畫樹狀圖求出所有等可能的結(jié)果數(shù),再找出從口袋中隨機摸出2個球,摸到的兩個球是一紅一白的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:根據(jù)題意畫樹狀圖如下:共有12種等可能的結(jié)果數(shù),其中從口袋中隨機摸出2個球,摸到的一個紅球、一個白球的結(jié)果數(shù)為4,所以從口袋中隨機摸出2個球,則摸到的兩個球是一白一黃的概率為.故答案為.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.17、1【解析】
連接AD,根據(jù)PQ∥AB可知∠ADQ=∠DAB,再由點D在∠BAC的平分線上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根據(jù)勾股定理可知,AQ=11-4x,故可得出x的值,進而得出結(jié)論.【詳解】連接AD,∵PQ∥AB,∴∠ADQ=∠DAB,∵點D在∠BAC的平分線上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,設(shè)PC=3x,CQ=4x,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=1x,∵AQ=4-4x,∴4-4x=1x,解得x=,
∴CP=3x=1;故答案為:1.【點睛】本題考查平行線的性質(zhì)、旋轉(zhuǎn)變換、等腰三角形的判定、勾股定理、相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學會利用參數(shù)解決問題,屬于中考??碱}型.三、解答題(共7小題,滿分69分)18、:(1)30o;(2).【解析】分析:(1)由已知條件易得∠ABC=∠A=60°,結(jié)合BD平分∠ABC和CD∥AB即可求得∠CDB=30°;(2)過點D作DH⊥AB于點H,則∠AHD=30°,由(1)可知∠BDA=∠DBC=30°,結(jié)合∠A=60°可得∠ADB=90°,∠ADH=30°,DC=BC=AD=2,由此可得AB=2AD=4,AH=,這樣即可由梯形的面積公式求出梯形ABCD的面積了.詳解:(1)∵在梯形ABCD中,DC∥AB,AD=BC,∠A=60°,∴∠CBA=∠A=60o,∵BD平分∠ABC,∴∠CDB=∠ABD=∠CBA=30o,(2)在△ACD中,∵∠ADB=180o–∠A–∠ABD=90o.∴BD=ADA=2tan60o=2.過點D作DH⊥AB,垂足為H,∴AH=ADA=2sin60o=.∵∠CDB=∠CBD=∠CBD=30o,∴DC=BC=AD=2∵AB=2AD=4∴.點睛:本題是一道應(yīng)用等腰梯形的性質(zhì)求解的題,熟悉等腰梯形的性質(zhì)和直角三角形中30°的角所對直角邊是斜邊的一半及等腰三角形的判定,是正確解答本題的關(guān)鍵.19、(1)(2)(3)【解析】
(1)根據(jù)待定系數(shù)法,可得二次函數(shù)的解析式;(2)根據(jù)待定系數(shù)法,可得AB的解析式,根據(jù)關(guān)于x軸對稱的橫坐標相等,縱坐標互為相反數(shù),可得答案;(3)根據(jù)PM<PN,可得不等式,利用絕對值的性質(zhì)化簡解不等式,可得答案.【詳解】(1)將A(﹣1,1),B(2,5)代入函數(shù)解析式,得:,解得:,拋物線的解析式為y=x2﹣2x﹣3;(2)設(shè)AB的解析式為y=kx+b,將A(﹣1,1),B(2,5)代入函數(shù)解析式,得:,解得:,直線AB的解析式為y=x+1,直線AB關(guān)于x軸的對稱直線的表達式y(tǒng)=﹣(x+1),化簡,得:y=﹣x﹣1;(3)設(shè)M(n,n2﹣2n﹣3),N(n,n+1),PM<PN,即|n2﹣2n﹣3|<|n+1|.∴|(n+1)(n-3)|-|n+1|<1,∴|n+1|(|n-3|-1)<1.∵|n+1|≥1,∴|n-3|-1<1,∴|n-3|<1,∴-1<n-3<1,解得:2<n<2.故當PM<PN時,求點P的橫坐標xP的取值范圍是2<xP<2.【點睛】本題考查了二次函數(shù)綜合題.解(1)的關(guān)鍵是待定系數(shù)法,解(2)的關(guān)鍵是利用關(guān)于x軸對稱的橫坐標相等,縱坐標互為相反數(shù);解(3)的關(guān)鍵是利用絕對值的性質(zhì)化簡解不等式.20、(1)答案見解析;(2)證明見解析.【解析】
(1)如圖,在⊙O上依次截取六段弦,使它們都等于OA,從而得到正六邊形ABCDEF;(2)連接BE,如圖,利用正六邊形的性質(zhì)得AB=BC=CD=DE=EF=FA,,則判斷BE為直徑,所以∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,然后判斷四邊形BCEF為矩形.【詳解】解:(1)如圖,正六邊形ABCDEF為所作;(2)四邊形BCEF為矩形.理由如下:連接BE,如圖,∵六邊形ABCDEF為正六邊形,∴AB=BC=CD=DE=EF=FA,∴,∴,∴,∴BE為直徑,∴∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,∴四邊形BCEF為矩形.【點睛】本題考查了作圖-復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.也考查了矩形的判定與正六邊形的性質(zhì).21、解:(1)①DE∥AC.②.(1)仍然成立,證明見解析;(3)3或2.【解析】
(1)①由旋轉(zhuǎn)可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等邊三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②過D作DN⊥AC交AC于點N,過E作EM⊥AC交AC延長線于M,過C作CF⊥AB交AB于點F.由①可知:△ADC是等邊三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如圖,過點D作DM⊥BC于M,過點A作AN⊥CE交EC的延長線于N,
∵△DEC是由△ABC繞點C旋轉(zhuǎn)得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
∵在△ACN和△DCM中,,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),
即S1=S1;(3)如圖,過點D作DF1∥BE,易求四邊形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此時S△DCF1=S△BDE;
過點D作DF1⊥BD,
∵∠ABC=20°,F(xiàn)1D∥BE,
∴∠F1F1D=∠ABC=20°,
∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,
∴∠F1DF1=∠ABC=20°,
∴△DF1F1是等邊三角形,
∴DF1=DF1,過點D作DG⊥BC于G,
∵BD=CD,∠ABC=20°,點D是角平分線上一點,
∴∠DBC=∠DCB=×20°=30°,BG=BC=,
∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,
∠CDF1=320°-150°-20°=150°,
∴∠CDF1=∠CDF1,
∵在△CDF1和△CDF1中,,
∴△CDF1≌△CDF1(SAS),
∴點F1也是所求的點,
∵∠ABC=20°,點D是角平分線上一點,DE∥AB,
∴∠DBC=∠BDE=∠ABD=×20°=30°,
又∵BD=3,
∴BE=×3÷cos30°=3,
∴BF1=3,BF1=BF1+F1F1=3+3=2,
故BF的長為3或2.22、(1)2000件;(2)90260元.【解析】
(1)設(shè)該商場第一批購進襯衫x件,則第二批購進襯衫2x件,根據(jù)單價=總價÷數(shù)量結(jié)合第二批比第一批的進價漲了4元/件,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;(2)用(1)的結(jié)論×2可求出第二批購進該種襯衫的數(shù)量,再利用總利潤=銷售收入-成本,即可得出結(jié)論.【詳解】解:(1)設(shè)該商場第一批購進襯衫x件,則第二批購進襯衫2x件,根據(jù)題意得:-=4,解得:x=2000,經(jīng)檢驗,x=2000是所列分式方程的解,且符合題意.答:商場第一批購進襯衫2000件.(2)2000×2=4000(件),(2000+4000-150)×58+150×58×0.8-80000-176000=90260(元).答:售完這兩批襯衫,商場共盈利90260元.【點睛】本題考查了分式方程的應(yīng)用,解題的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 甜品店展示架租賃協(xié)議
- 醫(yī)療機構(gòu)租賃合同條款全解讀
- 人事檔案合同范例
- 續(xù)訂借款主合同范例
- 荒山造林土地承包合同
- 退股資金分期退還合同樣本
- 工業(yè)合同簽訂流程
- 鴨棚轉(zhuǎn)讓合同范例
- 文物建筑保護合同范例
- 科技公司入股合同范例
- 高考模擬作文“不能”與“不為”主題作文導(dǎo)寫及范文
- 滄州市基層診所基本公共衛(wèi)生服務(wù)醫(yī)療機構(gòu)衛(wèi)生院社區(qū)衛(wèi)生服務(wù)中心村衛(wèi)生室地址信息
- 2022年法考主觀題考試真題收集
- 銀行安全保衛(wèi)人員試題庫【含答案】
- 企業(yè)安全生產(chǎn)法律法規(guī)培訓記錄參考模板范本
- SJG 102-2021 城市軌道交通工程信息模型分類和編碼標準-高清現(xiàn)行
- 十年十大考古發(fā)現(xiàn)系列之4:南漢二陵:雄霸嶺南數(shù)十年的“大漢”
- 淺談數(shù)據(jù)完整性
- (完整版)重慶中學教材使用版本
- 綠化起重吊裝專項方案
- 整車機艙布置基本知識
評論
0/150
提交評論