河南省鹿邑城郊鄉(xiāng)陽光中學2025屆初三全國高校招生模擬考試數(shù)學試題含解析_第1頁
河南省鹿邑城郊鄉(xiāng)陽光中學2025屆初三全國高校招生模擬考試數(shù)學試題含解析_第2頁
河南省鹿邑城郊鄉(xiāng)陽光中學2025屆初三全國高校招生模擬考試數(shù)學試題含解析_第3頁
河南省鹿邑城郊鄉(xiāng)陽光中學2025屆初三全國高校招生模擬考試數(shù)學試題含解析_第4頁
河南省鹿邑城郊鄉(xiāng)陽光中學2025屆初三全國高校招生模擬考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

河南省鹿邑城郊鄉(xiāng)陽光中學2025屆初三全國高校招生模擬考試數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在解方程-1=時,兩邊同時乘6,去分母后,正確的是()A.3x-1-6=2(3x+1) B.(x-1)-1=2(x+1)C.3(x-1)-1=2(3x+1) D.3(x-1)-6=2(3x+1)2.如圖,由四個正方體組成的幾何體的左視圖是()A. B. C. D.3.在△ABC中,∠C=90°,tanA=125,△ABC的周長為60,那么△ABCA.60 B.30 C.240 D.1204.小紅上學要經(jīng)過兩個十字路口,每個路口遇到紅、綠燈的機會都相同,小紅希望上學時經(jīng)過每個路口都是綠燈,但實際這樣的機會是()A. B. C. D.5.如圖,在同一平面直角坐標系中,一次函數(shù)y1=kx+b(k、b是常數(shù),且k≠0)與反比例函數(shù)y2=(c是常數(shù),且c≠0)的圖象相交于A(﹣3,﹣2),B(2,3)兩點,則不等式y(tǒng)1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<26.如圖,在直角坐標系中,等腰直角△ABO的O點是坐標原點,A的坐標是(﹣4,0),直角頂點B在第二象限,等腰直角△BCD的C點在y軸上移動,我們發(fā)現(xiàn)直角頂點D點隨之在一條直線上移動,這條直線的解析式是()A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+27.已知等腰三角形的周長是10,底邊長y是腰長x的函數(shù),則下列圖象中,能正確反映y與x之間函數(shù)關系的圖象是()A. B. C.D8.下列美麗的圖案中,不是軸對稱圖形的是()A. B. C. D.9.若等式x2+ax+19=(x﹣5)2﹣b成立,則a+b的值為()A.16 B.﹣16 C.4 D.﹣410.如圖所示是小孔成像原理的示意圖,根據(jù)圖中所標注的尺寸,求出這支蠟燭在暗盒中所成像的長()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在平面直角坐標系中,矩形OACB的頂點O是坐標原點,頂點A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點.若E為邊OA上的一個動點,當△CDE的周長最小時,則點E的坐標____________.12.計算:2﹣1+=_____.13.如圖,在矩形ABCD中,AB=8,AD=6,點E為AB上一點,AE=2,點F在AD上,將△AEF沿EF折疊,當折疊后點A的對應點A′恰好落在BC的垂直平分線上時,折痕EF的長為_____.14.分解因式:=___________.15.如圖,一扇形紙扇完全打開后,外側(cè)兩竹條AB和AC的夾角為120°,AB長為25cm,貼紙部分的寬BD為15cm,若紙扇兩面貼紙,則貼紙的面積為_____.(結(jié)果保留π)16.如圖,四邊形ABCD內(nèi)接于⊙O,AD、BC的延長線相交于點E,AB、DC的延長線相交于點F.若∠E+∠F=80°,則∠A=____°.17.已知A(x1,y1),B(x2,y2)都在反比例函數(shù)y=的圖象上.若x1x2=﹣4,則y1y2的值為______.三、解答題(共7小題,滿分69分)18.(10分)如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點A,與y軸交于點B,與反比例函數(shù)圖象的一個交點為M(﹣2,m).(1)求反比例函數(shù)的解析式;(2)求點B到直線OM的距離.19.(5分)如圖,點D為△ABC邊上一點,請用尺規(guī)過點D,作△ADE,使點E在AC上,且△ADE與△ABC相似.(保留作圖痕跡,不寫作法,只作出符合條件的一個即可)20.(8分)解不等式組:,并寫出它的所有整數(shù)解.21.(10分)“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行.某自行車店在銷售某型號自行車時,以高出進價的50%標價.已知按標價九折銷售該型號自行車8輛與將標價直降100元銷售7輛獲利相同.求該型號自行車的進價和標價分別是多少元?若該型號自行車的進價不變,按(1)中的標價出售,該店平均每月可售出51輛;若每輛自行車每降價20元,每月可多售出3輛,求該型號自行車降價多少元時,每月獲利最大?最大利潤是多少?22.(10分)(1)如圖,四邊形為正方形,,那么與相等嗎?為什么?(2)如圖,在中,,,為邊的中點,于點,交于,求的值(3)如圖,中,,為邊的中點,于點,交于,若,,求.23.(12分)如圖,一次函數(shù)(為常數(shù),且)的圖像與反比例函數(shù)的圖像交于,兩點.求一次函數(shù)的表達式;若將直線向下平移個單位長度后與反比例函數(shù)的圖像有且只有一個公共點,求的值.24.(14分)如圖,AB是⊙O的直徑,點C是AB延長線上的點,CD與⊙O相切于點D,連結(jié)BD、AD.(1)求證;∠BDC=∠A.(2)若∠C=45°,⊙O的半徑為1,直接寫出AC的長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】解:,∴3(x﹣1)﹣6=2(3x+1),故選D.點睛:本題考查了等式的性質(zhì),解題的關鍵是正確理解等式的性質(zhì),本題屬于基礎題型.2、B【解析】從左邊看可以看到兩個小正方形摞在一起,故選B.3、D【解析】

由tanA的值,利用銳角三角函數(shù)定義設出BC與AC,進而利用勾股定理表示出AB,由周長為60求出x的值,確定出兩直角邊,即可求出三角形面積.【詳解】如圖所示,由tanA=125設BC=12x,AC=5x,根據(jù)勾股定理得:AB=13x,由題意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,則△ABC面積為120,故選D.此題考查了解直角三角形,銳角三角函數(shù)定義,以及勾股定理,熟練掌握勾股定理是解本題的關鍵.4、C【解析】

列舉出所有情況,看每個路口都是綠燈的情況數(shù)占總情況數(shù)的多少即可得.【詳解】畫樹狀圖如下,共4種情況,有1種情況每個路口都是綠燈,所以概率為.故選C.5、C【解析】【分析】一次函數(shù)y1=kx+b落在與反比例函數(shù)y2=圖象上方的部分對應的自變量的取值范圍即為所求.【詳解】∵一次函數(shù)y1=kx+b(k、b是常數(shù),且k≠0)與反比例函數(shù)y2=(c是常數(shù),且c≠0)的圖象相交于A(﹣3,﹣2),B(2,3)兩點,∴不等式y(tǒng)1>y2的解集是﹣3<x<0或x>2,故選C.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,利用數(shù)形結(jié)合是解題的關鍵.6、D【解析】

抓住兩個特殊位置:當BC與x軸平行時,求出D的坐標;C與原點重合時,D在y軸上,求出此時D的坐標,設所求直線解析式為y=kx+b,將兩位置D坐標代入得到關于k與b的方程組,求出方程組的解得到k與b的值,即可確定出所求直線解析式.【詳解】當BC與x軸平行時,過B作BE⊥x軸,過D作DF⊥x軸,交BC于點G,如圖1所示.∵等腰直角△ABO的O點是坐標原點,A的坐標是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐標為(﹣1,3);當C與原點O重合時,D在y軸上,此時OD=BE=1,即D(0,1),設所求直線解析式為y=kx+b(k≠0),將兩點坐標代入得:,解得:.則這條直線解析式為y=﹣x+1.故選D.本題屬于一次函數(shù)綜合題,涉及的知識有:待定系數(shù)法確定一次函數(shù)解析式,等腰直角三角形的性質(zhì),坐標與圖形性質(zhì),熟練運用待定系數(shù)法是解答本題的關鍵.7、D【解析】

先根據(jù)三角形的周長公式求出函數(shù)關系式,再根據(jù)三角形的任意兩邊之和大于第三邊,三角形的任意兩邊之差小于第三邊求出x的取值范圍,然后選擇即可.【詳解】由題意得,2x+y=10,所以,y=-2x+10,由三角形的三邊關系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式組的解集是2.5<x<5,正確反映y與x之間函數(shù)關系的圖象是D選項圖象.故選:D.8、A【解析】

根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,故本選項正確;B、是軸對稱圖形,故本選項錯誤;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選A.本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.9、D【解析】分析:已知等式利用完全平方公式整理后,利用多項式相等的條件求出a與b的值,即可求出a+b的值.詳解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,可得a=-10,b=6,則a+b=-10+6=-4,故選D.點睛:此題考查了完全平方公式,熟練掌握完全平方公式是解本題的關鍵.10、D【解析】

過O作直線OE⊥AB,交CD于F,由CD//AB可得△OAB∽△OCD,根據(jù)相似三角形對應邊的比等于對應高的比列方程求出CD的值即可.【詳解】過O作直線OE⊥AB,交CD于F,∵AB//CD,∴OF⊥CD,OE=12,OF=2,∴△OAB∽△OCD,∵OE、OF分別是△OAB和△OCD的高,∴,即,解得:CD=1.故選D.本題考查相似三角形的應用,解題的關鍵在于理解小孔成像原理給我們帶來的已知條件,熟記相似三角形對應邊的比等于對應高的比是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、(1,0)【解析】分析:由于C、D是定點,則CD是定值,如果的周長最小,即有最小值.為此,作點D關于x軸的對稱點D′,當點E在線段CD′上時的周長最?。斀猓喝鐖D,作點D關于x軸的對稱點D′,連接CD′與x軸交于點E,連接DE.若在邊OA上任取點E′與點E不重合,連接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE的周長最小,∵在矩形OACB中,OA=3,OB=4,D為OB的中點,∴BC=3,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽Rt△D′BC,有∴OE=1,∴點E的坐標為(1,0).故答案為:(1,0).點睛:考查軸對稱-最短路線問題,坐標與圖形性質(zhì),相似三角形的判定與性質(zhì)等,找出點E的位置是解題的關鍵.12、【解析】根據(jù)負整指數(shù)冪的性質(zhì)和二次根式的性質(zhì),可知=.故答案為.13、4或4.【解析】

①當AF<AD時,由折疊的性質(zhì)得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,過E作EH⊥MN于H,由矩形的性質(zhì)得到MH=AE=2,根據(jù)勾股定理得到A′H=,根據(jù)勾股定理列方程即可得到結(jié)論;②當AF>AD時,由折疊的性質(zhì)得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,過A′作HG∥BC交AB于G,交CD于H,根據(jù)矩形的性質(zhì)得到DH=AG,HG=AD=6,根據(jù)勾股定理即可得到結(jié)論.【詳解】①當AF<AD時,如圖1,將△AEF沿EF折疊,當折疊后點A的對應點A′恰好落在BC的垂直平分線上,則A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,設MN是BC的垂直平分線,則AM=AD=3,過E作EH⊥MN于H,則四邊形AEHM是矩形,∴MH=AE=2,∵A′H=,∴A′M=,∵MF2+A′M2=A′F2,∴(3-AF)2+()2=AF2,∴AF=2,∴EF==4;②當AF>AD時,如圖2,將△AEF沿EF折疊,當折疊后點A的對應點A′恰好落在BC的垂直平分線上,則A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,設MN是BC的垂直平分線,過A′作HG∥BC交AB于G,交CD于H,則四邊形AGHD是矩形,∴DH=AG,HG=AD=6,∴A′H=A′G=HG=3,∴EG==,∴DH=AG=AE+EG=3,∴A′F==6,∴EF==4,綜上所述,折痕EF的長為4或4,故答案為:4或4.本題考查了翻折變換-折疊問題,矩形的性質(zhì)和判定,勾股定理,正確的作出輔助線是解題的關鍵.14、【解析】

直接利用完全平方公式分解因式得出答案.【詳解】解:=,故答案為.此題主要考查了公式法分解因式,正確應用完全平方公式是解題關鍵.15、πcm1.【解析】

求出AD,先分別求出兩個扇形的面積,再求出答案即可.【詳解】解:∵AB長為15cm,貼紙部分的寬BD為15cm,∴AD=10cm,∴貼紙的面積為S=S扇形ABC﹣S扇形ADE=(cm1),故答案為πcm1.本題考查了扇形的面積計算,能熟記扇形的面積公式是解此題的關鍵.16、50【解析】試題分析:連結(jié)EF,如圖,根據(jù)圓內(nèi)接四邊形的性質(zhì)得∠A+∠BCD=180°,根據(jù)對頂角相等得∠BCD=∠ECF,則∠A+∠ECF=180°,根據(jù)三角形內(nèi)角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形內(nèi)角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,則∠A+80°+∠A=180°,然后解方程即可.試題解析:連結(jié)EF,如圖,∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠BCD=180°,而∠BCD=∠ECF,∴∠A+∠ECF=180°,∵∠ECF+∠1+∠2=180°,∴∠1+∠2=∠A,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°,∴∠A+80°+∠A=180°,∴∠A=50°.考點:圓內(nèi)接四邊形的性質(zhì).17、﹣1.【解析】

根據(jù)反比例函數(shù)圖象上點的坐標特征得到再把它們相乘,然后把代入計算即可.【詳解】根據(jù)題意得所以故答案為:?1.考查反比例函數(shù)圖象上點的坐標特征,把點的坐標代入反比例函數(shù)解析式得到是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)(2).【解析】

(1)根據(jù)一次函數(shù)解析式求出M點的坐標,再把M點的坐標代入反比例函數(shù)解析式即可;(2)設點B到直線OM的距離為h,過M點作MC⊥y軸,垂足為C,根據(jù)一次函數(shù)解析式表示出B點坐標,利用△OMB的面積=×BO×MC算出面積,利用勾股定理算出MO的長,再次利用三角形的面積公式可得OM?h,根據(jù)前面算的三角形面積可算出h的值.【詳解】解:(1)∵一次函數(shù)y1=﹣x﹣1過M(﹣2,m),∴m=1.∴M(﹣2,1).把M(﹣2,1)代入得:k=﹣2.∴反比列函數(shù)為.(2)設點B到直線OM的距離為h,過M點作MC⊥y軸,垂足為C.∵一次函數(shù)y1=﹣x﹣1與y軸交于點B,∴點B的坐標是(0,﹣1).∴.在Rt△OMC中,,∵,∴.∴點B到直線OM的距離為.19、見解析【解析】

以DA為邊、點D為頂點在△ABC內(nèi)部作一個角等于∠B,角的另一邊與AC的交點即為所求作的點.【詳解】解:如圖,點E即為所求作的點.本題主要考查作圖-相似變換,根據(jù)相似三角形的判定明確過點D作DE∥BC并熟練掌握做一個角等于已知角的作法式解題的關鍵.20、﹣2,﹣1,0,1,2;【解析】

首先解每個不等式,兩個不等式的解集的公共部分就是不等式組的解集;再確定解集中的所有整數(shù)解即可.【詳解】解:解不等式(1),得解不等式(2),得x≤2所以不等式組的解集:-3<x≤2它的整數(shù)解為:-2,-1,0,1,221、(1)進價為1000元,標價為1500元;(2)該型號自行車降價80元出售每月獲利最大,最大利潤是26460元.【解析】分析:(1)設進價為x元,則標價是1.5x元,根據(jù)關鍵語句:按標價九折銷售該型號自行車8輛的利潤是1.5x×0.9×8-8x,將標價直降100元銷售7輛獲利是(1.5x-100)×7-7x,根據(jù)利潤相等可得方程1.5x×0.9×8-8x=(1.5x-100)×7-7x,再解方程即可得到進價,進而得到標價;(2)設該型號自行車降價a元,利潤為w元,利用銷售量×每輛自行車的利潤=總利潤列出函數(shù)關系式,再利用配方法求最值即可.詳解:(1)設進價為x元,則標價是1.5x元,由題意得:1.5x×0.9×8-8x=(1.5x-100)×7-7x,解得:x=1000,1.5×1000=1500(元),答:進價為1000元,標價為1500元;(2)設該型號自行車降價a元,利潤為w元,由題意得:w=(51+×3)(1500-1000-a),=-(a-80)2+26460,∵-<0,∴當a=80時,w最大=26460,答:該型號自行車降價80元出售每月獲利最大,最大利潤是26460元.點睛:此題主要考查了二次函數(shù)的應用,以及元一次方程的應用,關鍵是正確理解題意,根據(jù)已知得出w與a的關系式,進而求出最值.22、(1)相等,理由見解析;(2)2;(3).【解析】

(1)先判斷出AB=AD,再利用同角的余角相等,判斷出∠ABF=∠DAE,進而得出△ABF≌△DAE,即可得出結(jié)論;

(2)構造出正方形,同(1)的方法得出△ABD≌△CBG,進而得出CG=AB,再判斷出△AFB∽△CFG,即可得出結(jié)論;

(3)先構造出矩形,同(1)的方法得,∠BAD=∠CBP,進而判斷出△ABD∽△BCP,即可求出CP,再同(2)的方法判斷出△CFP∽△AFB,建立方程即可得出結(jié)論.【詳解】解:(1)BF=AE,理由:

∵四邊形ABCD是正方形,

∴AB=AD,∠BAD=∠D=90°,

∴∠BAE+∠DAE=90°,

∵AE⊥BF,

∴∠BAE+∠ABF=90°,

∴∠ABF=∠DAE,

在△ABF和△DAE中,∴△ABF≌△DAE,

∴BF=AE,(2)如圖2,

過點A作AM∥BC,過點C作CM∥AB,兩線相交于M,延長BF交CM于G,

∴四邊形ABCM是平行四邊形,

∵∠ABC=90°,

∴?ABCM是矩形,

∵AB=BC,

∴矩形ABCM是正方形,

∴AB=BC=CM,

同(1)的方法得,△ABD≌△BCG,

∴CG=BD,

∵點D是BC中點,

∴BD=BC=CM,

∴CG=CM=AB,

∵AB∥CM,

∴△AFB∽△CFG,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論