湖北省武漢市武昌區(qū)C組聯(lián)盟市級名校2024-2025學年初三數(shù)學試題全國三卷模擬卷2含解析_第1頁
湖北省武漢市武昌區(qū)C組聯(lián)盟市級名校2024-2025學年初三數(shù)學試題全國三卷模擬卷2含解析_第2頁
湖北省武漢市武昌區(qū)C組聯(lián)盟市級名校2024-2025學年初三數(shù)學試題全國三卷模擬卷2含解析_第3頁
湖北省武漢市武昌區(qū)C組聯(lián)盟市級名校2024-2025學年初三數(shù)學試題全國三卷模擬卷2含解析_第4頁
湖北省武漢市武昌區(qū)C組聯(lián)盟市級名校2024-2025學年初三數(shù)學試題全國三卷模擬卷2含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省武漢市武昌區(qū)C組聯(lián)盟市級名校2024-2025學年初三數(shù)學試題全國三卷模擬卷2考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖圖形中,可以看作中心對稱圖形的是()A. B. C. D.2.下列分式中,最簡分式是()A. B. C. D.3.下列各式中,正確的是()A.t5·t5=2t5B.t4+t2=t6C.t3·t4=t12D.t2·t3=t54.如圖,AB∥CD,AD與BC相交于點O,若∠A=50°10′,∠COD=100°,則∠C等于()A.30°10′ B.29°10′ C.29°50′ D.50°10′5.已知關于x的一元二次方程x2+mx+n=0的兩個實數(shù)根分別為x1=2,x2=4,則m+n的值是()A.﹣10 B.10 C.﹣6 D.26.港珠澳大橋是連接香港、珠海、澳門的超大型跨海通道,全長約55000米,把55000用科學記數(shù)法表示為()A.55×103 B.5.5×104 C.5.5×105 D.0.55×1057.下列運算正確的是()A.a3?a2=a6 B.(a2)3=a5 C.=3 D.2+=28.如圖,在?ABCD中,∠DAB的平分線交CD于點E,交BC的延長線于點G,∠ABC的平分線交CD于點F,交AD的延長線于點H,AG與BH交于點O,連接BE,下列結論錯誤的是()A.BO=OHB.DF=CEC.DH=CGD.AB=AE9.如圖,正比例函數(shù)y=x與反比例函數(shù)y=4x的圖象交于A(2,2)、B(﹣2,﹣2)兩點,當y=x的函數(shù)值大于A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>210.下列二次函數(shù)中,圖象以直線x=2為對稱軸、且經過點(0,1)的是()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x﹣2)2﹣3D.y=(x+2)2﹣311.有三張正面分別標有數(shù)字-2,3,4的不透明卡片,它們除數(shù)字不同外,其余全部相同,現(xiàn)將它們背面朝上洗勻后,從中任取一張(不放回),再從剩余的卡片中任取一張,則兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是()A. B. C. D.12.剪紙是我國傳統(tǒng)的民間藝術.下列剪紙作品既不是中心對稱圖形,也不是軸對稱圖形的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在由乙猜甲剛才想的數(shù)字游戲中,把乙猜的數(shù)字記為b且,a,b是0,1,2,3四個數(shù)中的其中某一個,若|a﹣b|≤1則稱甲乙”心有靈犀”.現(xiàn)任意找兩個人玩這個游戲,得出他們”心有靈犀”的概率為_____.14.如圖,在正六邊形ABCDEF的上方作正方形AFGH,聯(lián)結GC,那么的正切值為___.15.已知a+1a=3,則a16.如圖,數(shù)軸上點A表示的數(shù)為a,化簡:a_____.17.分解因式:_______________.18.如圖,從直徑為4cm的圓形紙片中,剪出一個圓心角為90°的扇形OAB,且點O、A、B在圓周上,把它圍成一個圓錐,則圓錐的底面圓的半徑是_____cm.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)元旦放假期間,小明和小華準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.(1)求小明選擇去白鹿原游玩的概率;(2)用樹狀圖或列表的方法求小明和小華都選擇去秦嶺國家植物園游玩的概率.20.(6分)如圖所示,某校九年級(3)班的一個學習小組進行測量小山高度的實踐活動.部分同學在山腳A點處測得山腰上一點D的仰角為30°,并測得AD的長度為180米.另一部分同學在山頂B點處測得山腳A點的俯角為45°,山腰D點的俯角為60°,請你幫助他們計算出小山的高度BC.(計算過程和結果都不取近似值)21.(6分)如圖,某校一幢教學大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD.小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求這塊宣傳牌CD的高度.(測角器的高度忽略不計,結果精確到0.1米.參考數(shù)據(jù):≈1.414,≈1.732)22.(8分)平面直角坐標系中(如圖),已知拋物線經過點和,與y軸相交于點C,頂點為P.(1)求這條拋物線的表達式和頂點P的坐標;(2)點E在拋物線的對稱軸上,且,求點E的坐標;(3)在(2)的條件下,記拋物線的對稱軸為直線MN,點Q在直線MN右側的拋物線上,,求點Q的坐標.23.(8分)閱讀下面材料,并解答問題.材料:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.解:由分母為﹣x2+1,可設﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵對應任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+這樣,分式被拆分成了一個整式x2+2與一個分式的和.解答:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.試說明的最小值為1.24.(10分)如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O經過AC的中點D,E為⊙O上的一點,連接DE,BE,DE與AB交于點F.求證:BC為⊙O的切線;若F為OA的中點,⊙O的半徑為2,求BE的長.25.(10分)如圖,在平面直角坐標系中,直線經過點和,雙曲線經過點B.(1)求直線和雙曲線的函數(shù)表達式;(2)點C從點A出發(fā),沿過點A與y軸平行的直線向下運動,速度為每秒1個單位長度,點C的運動時間為t(0<t<12),連接BC,作BD⊥BC交x軸于點D,連接CD,①當點C在雙曲線上時,求t的值;②在0<t<6范圍內,∠BCD的大小如果發(fā)生變化,求tan∠BCD的變化范圍;如果不發(fā)生變化,求tan∠BCD的值;③當時,請直接寫出t的值.26.(12分)如圖,AC=DC,BC=EC,∠ACD=∠BCE.求證:∠A=∠D.27.(12分)為加快城鄉(xiāng)對接,建設全域美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進行改建.如圖,A、B兩地之間有一座山,汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°.開通隧道前,汽車從A地到B地大約要走多少千米?開通隧道后,汽車從A地到B地大約可以少走多少千米?(結果精確到0.1千米)(參考數(shù)據(jù):≈1.41,≈1.73)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據(jù)把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心進行分析即可.【詳解】解:A、不是中心對稱圖形,故此選項不合題意;B、不是中心對稱圖形,故此選項不合題意;C、不是中心對稱圖形,故此選項不合題意;D、是中心對稱圖形,故此選項符合題意;故選D.此題主要考查了中心對稱圖形,關鍵掌握中心對稱圖形定義.2、A【解析】試題分析:選項A為最簡分式;選項B化簡可得原式==;選項C化簡可得原式==;選項D化簡可得原式==,故答案選A.考點:最簡分式.3、D【解析】選項A,根據(jù)同底數(shù)冪的乘法可得原式=t10;選項B,不是同類項,不能合并;選項C,根據(jù)同底數(shù)冪的乘法可得原式=t7;選項D,根據(jù)同底數(shù)冪的乘法可得原式=t5,四個選項中只有選項D正確,故選D.4、C【解析】

根據(jù)平行線性質求出∠D,根據(jù)三角形的內角和定理得出∠C=180°-∠D-∠COD,代入求出即可.【詳解】∵AB∥CD,∴∠D=∠A=50°10′,∵∠COD=100°,∴∠C=180°-∠D-∠COD=29°50′.故選C.本題考查了三角形的內角和定理和平行線的性質的應用,關鍵是求出∠D的度數(shù)和得出∠C=180°-∠D-∠COD.應該掌握的是三角形的內角和為180°.5、D【解析】

根據(jù)“一元二次方程x2+mx+n=0的兩個實數(shù)根分別為x1=2,x2=4”,結合根與系數(shù)的關系,分別列出關于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【詳解】解:根據(jù)題意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1?x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故選D.本題考查了根與系數(shù)的關系,正確掌握根與系數(shù)的關系是解決問題的關鍵.6、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】55000是5位整數(shù),小數(shù)點向左移動4位后所得的數(shù)即可滿足科學記數(shù)法的要求,由此可知10的指數(shù)為4,所以,55000用科學記數(shù)法表示為5.5×104,故選B.本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.7、C【解析】

結合選項分別進行冪的乘方和積的乘方、同底數(shù)冪的乘法、實數(shù)的運算等運算,然后選擇正確選項.【詳解】解:A.a3a2=a5,原式計算錯誤,故本選項錯誤;B.(a2)3=a6,原式計算錯誤,故本選項錯誤;C.=3,原式計算正確,故本選項正確;D.2和不是同類項,不能合并,故本選項錯誤.故選C.本題考查了冪的乘方與積的乘方,實數(shù)的運算,同底數(shù)冪的乘法,解題的關鍵是冪的運算法則.8、D【解析】解:∵四邊形ABCD是平行四邊形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.同理可證BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正確.∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正確.∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.同理可證EC=CG.∵DH=CG,∴DF=CE,故B正確.無法證明AE=AB,故選D.9、D【解析】試題分析:觀察函數(shù)圖象得到當﹣2<x<0或x>2時,正比例函數(shù)圖象都在反比例函數(shù)圖象上方,即有y=x的函數(shù)值大于y=4考點:1.反比例函數(shù)與一次函數(shù)的交點問題;2.數(shù)形結合思想的應用.10、C【解析】試題分析:根據(jù)頂點式,即A、C兩個選項的對稱軸都為x=2,再將(0,1)代入,符合的式子為C選項考點:二次函數(shù)的頂點式、對稱軸點評:本題考查學生對二次函數(shù)頂點式的掌握,難度較小,二次函數(shù)的頂點式解析式為y=(x-a)2+h,頂點坐標為11、C【解析】畫樹狀圖得:

∵共有6種等可能的結果,兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的有2種情況,

∴兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是:.故選C.【點睛】運用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.12、A【解析】試題分析:根據(jù)軸對稱圖形和中心對稱圖形的概念可知:選項A既不是中心對稱圖形,也不是軸對稱圖形,故本選項正確;選項B不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;選項C既是中心對稱圖形,也是軸對稱圖形,故本選項錯誤;選項D既是中心對稱圖形,也是軸對稱圖形,故本選項錯誤.故選A.考點:中心對稱圖形;軸對稱圖形.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

利用P(A)=,進行計算概率.【詳解】從0,1,2,3四個數(shù)中任取兩個則|a﹣b|≤1的情況有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10種情況,甲乙出現(xiàn)的結果共有4×4=16,故出他們”心有靈犀”的概率為.故答案是:.本題考查了概率的簡單計算能力,是一道列舉法求概率的問題,屬于基礎題,可以直接應用求概率的公式.14、【解析】

延長GF與CD交于點D,過點E作交DF于點M,設正方形的邊長為,則解直角三角形可得,根據(jù)正切的定義即可求得的正切值【詳解】延長GF與CD交于點D,過點E作交DF于點M,設正方形的邊長為,則,故答案為:考查正多邊形的性質,銳角三角函數(shù),構造直角三角形是解題的關鍵.15、7【解析】

根據(jù)完全平方公式可得:原式=(a+116、1.【解析】

直接利用二次根式的性質以及結合數(shù)軸得出a的取值范圍進而化簡即可.【詳解】由數(shù)軸可得:0<a<1,則a+=a+=a+(1﹣a)=1.故答案為1.本題主要考查了二次根式的性質與化簡,正確得出a的取值范圍是解題的關鍵.17、(x+y)(x-y)【解析】直接利用平方差公式因式分解即可,即原式=(x+y)(x-y),故答案為(x+y)(x-y).18、【解析】

設圓錐的底面圓的半徑為r,由于∠AOB=90°得到AB為圓形紙片的直徑,則OB=cm,根據(jù)弧長公式計算出扇形OAB的弧AB的長,然后根據(jù)圓錐的側面展開圖為扇形,扇形的弧長等于圓錐底面圓的周長進行計算.【詳解】解:設圓錐的底面圓的半徑為r,連結AB,如圖,∵扇形OAB的圓心角為90°,∴∠AOB=90°,∴AB為圓形紙片的直徑,∴AB=4cm,∴OB=cm,∴扇形OAB的弧AB的長=π,∴2πr=π,∴r=(cm).故答案為.本題考查了圓錐的計算:圓錐的側面展開圖為扇形,扇形的弧長等于圓錐底面圓的周長,扇形的半徑等于圓錐的母線長.也考查了圓周角定理和弧長公式.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)【解析】

(1)利用概率公式直接計算即可;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與小明和小華都選擇去同一個地方游玩的情況,再利用概率公式即可求得答案.【詳解】(1)∵小明準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,∴小明選擇去白鹿原游玩的概率=;(2)畫樹狀圖分析如下:兩人選擇的方案共有16種等可能的結果,其中選擇同種方案有1種,所以小明和小華都選擇去秦嶺國家植物園游玩的概率=.本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,求出概率.20、米【解析】

解:如圖,過點D作DE⊥AC于點E,作DF⊥BC于點F,則有DE∥FC,DF∥EC.∵∠DEC=90°,∴四邊形DECF是矩形,∴DE=FC.∵∠HBA=∠BAC=45°,∴∠BAD=∠BAC﹣∠DAE=45°﹣30°=15°.又∵∠ABD=∠HBD﹣∠HBA=60°﹣45°=15°,∴△ADB是等腰三角形.∴AD=BD=180(米).在Rt△AED中,sin∠DAE=sin30°=,∴DE=180?sin30°=180×=90(米),∴FC=90米,在Rt△BDF中,∠BDF=∠HBD=60°,sin∠BDF=sin60°=,∴BF=180?sin60°=180×(米).∴BC=BF+FC=90+90=90(+1)(米).答:小山的高度BC為90(+1)米.21、2.7米【解析】解:作BF⊥DE于點F,BG⊥AE于點G在Rt△ADE中∵tan∠ADE=,∴DE="AE"·tan∠ADE=15∵山坡AB的坡度i=1:,AB=10∴BG=5,AG=,∴EF=BG=5,BF=AG+AE=+15∵∠CBF=45°∴CF=BF=+15∴CD=CF+EF—DE=20—10≈20—10×1.732=2.68≈2.7答:這塊宣傳牌CD的高度為2.7米.22、(1),頂點P的坐標為;(2)E點坐標為;(3)Q點的坐標為.【解析】

(1)利用交點式寫出拋物線解析式,把一般式配成頂點式得到頂點P的坐標;(2)設,根據(jù)兩點間的距離公式,利用得到,然后解方程求出t即可得到E點坐標;(3)直線交軸于,作于,如圖,利用得到,設,則,再在中利用正切的定義得到,即,然后解方程求出m即可得到Q點坐標.【詳解】解:(1)拋物線解析式為,即,,頂點P的坐標為;(2)拋物線的對稱軸為直線,設,,,解得,E點坐標為;(3)直線交x軸于F,作MN⊥直線x=2于H,如圖,,而,,設,則,在中,,,整理得,解得(舍去),,Q點的坐標為.本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標特征、二次函數(shù)的性質和銳角三角函數(shù)的定義;會利用待定系數(shù)法求函數(shù)解析式;理解坐標與圖形性質,記住兩點間的距離公式.23、(1)=x2+7+(2)見解析【解析】

(1)根據(jù)閱讀材料中的方法將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式即可;(2)原式分子變形后,利用不等式的性質求出最小值即可.【詳解】(1)設﹣x4﹣6x+1=(﹣x2+1)(x2+a)+b=﹣x4+(1﹣a)x2+a+b,可得,解得:a=7,b=1,則原式=x2+7+;(2)由(1)可知,=x2+7+.∵x2≥0,∴x2+7≥7;當x=0時,取得最小值0,∴當x=0時,x2+7+最小值為1,即原式的最小值為1.24、(1)證明見解析;(2)【解析】

(1)連接BD,由圓周角性質定理和等腰三角形的性質以及已知條件證明∠ABC=90°即可;(2)連接OD,根據(jù)已知條件求得AD、DF的長,再證明△AFD∽△EFB,然后根據(jù)相似三角形的對應邊成比例即可求得.【詳解】(1)連接BD,∵AB為⊙O的直徑,∴BD⊥AC,∵D是AC的中點,∴BC=AB,∴∠C=∠A=45°,∴∠ABC=90°,∴BC是⊙O的切線;(2)連接OD,由(1)可得∠AOD=90°,∵⊙O的半徑為2,F(xiàn)為OA的中點,∴OF=1,BF=3,,∴,∵,∴∠E=∠A,∵∠AFD=∠EFB,∴△AFD∽△EFB,∴,即,∴.本題考查了切線的判定與性質、相似三角形的判定與性質以及勾股定理的運用;證明某一線段是圓的切線時,一般情況下是連接切點與圓心,通過證明該半徑垂直于這一線段來判定切線.25、(1)直線的表達式為,雙曲線的表達式為;(2)①;②當時,的大小不發(fā)生變化,的值為;③t的值為或.【解析】

(1)由點利用待定系數(shù)法可求出直線的表達式;再由直線的表達式求出點B的坐標,然后利用待定系數(shù)法即可求出雙曲線的表達式;(2)①先求出點C的橫坐標,再將其代入雙曲線的表達式求出點C的縱坐標,從而即可得出t的值;②如圖1(見解析),設直線AB交y軸于M,則,取CD的中點K,連接AK、BK.利用直角三角形的性質證明A、D、B、C四點共圓,再根據(jù)圓周角定理可得,從而得出,即可解決問題;③如圖2(見解析),過點B作于M,先求出點D與點M重合的臨界位置時t的值,據(jù)此分和兩種情況討論:根據(jù)三點坐標求出的長,再利用三角形相似的判定定理與性質求出DM的長,最后在中,利用勾股定理即可得出答案.【詳解】(1)∵直線經過點和∴將點代入得解得故直線的表達式為將點代入直線的表達式得解得∵雙曲線經過點,解得故雙曲線的表達式為;(2)①軸,點A的坐標為∴點C的橫坐標為12將其代入雙曲線的表達式得∴C的縱坐標為,即由題意得,解得故當點C在雙曲線上時,t的值為;②當時,的大小不發(fā)生變化,求解過程如下:若點D與點A重合由題意知,點C坐標為由兩點距離公式得:由勾股定理得,即解得因此,在范圍內,點D與點A不重合,且在點A左側如圖1,設直線AB交y軸于M,取CD的中點K,連接AK、BK由(1)知,直線AB的表達式為令得,則,即點K為CD的中點,(直角三角形中,斜邊上的中線等于斜邊的一

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論