版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆天津市靜海區(qū)獨(dú)流中學(xué)四校聯(lián)考高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知對(duì)稱軸為坐標(biāo)軸的雙曲線的兩漸近線方程為,若雙曲線上有一點(diǎn),使,則雙曲線的焦點(diǎn)()A.在軸上 B.在軸上C.當(dāng)時(shí)在軸上 D.當(dāng)時(shí)在軸上2.某研究所計(jì)劃建設(shè)n個(gè)實(shí)驗(yàn)室,從第1實(shí)驗(yàn)室到第n實(shí)驗(yàn)室的建設(shè)費(fèi)用依次構(gòu)成等差數(shù)列,已知第7實(shí)驗(yàn)室比第2實(shí)驗(yàn)室的建設(shè)費(fèi)用多15萬元,第3實(shí)驗(yàn)室和第6實(shí)驗(yàn)室的建設(shè)費(fèi)用共為61萬元.現(xiàn)在總共有建設(shè)費(fèi)用438萬元,則該研究所最多可以建設(shè)的實(shí)驗(yàn)室個(gè)數(shù)是()A.10 B.11C.12 D.133.已知拋物線的焦點(diǎn)為,拋物線上的兩點(diǎn),均在第一象限,且,,,則直線的斜率為()A.1 B.C. D.4.過兩點(diǎn)和的直線的斜率為()A. B.C. D.5.設(shè),則A.2 B.3C.4 D.56.已知函數(shù),為的導(dǎo)數(shù),則()A.-1 B.1C. D.7.已知是定義在上的奇函數(shù),對(duì)任意兩個(gè)不相等的正數(shù)、都有,記,,,則()A. B.C. D.8.在四面體中,設(shè),若F為BC的中點(diǎn),P為EF的中點(diǎn),則=()A. B.C. D.9.若直線與曲線有兩個(gè)公共點(diǎn),則實(shí)數(shù)的取值范圍為()A. B.C. D.10.若是雙曲線的左右焦點(diǎn),是坐標(biāo)原點(diǎn).過作的一條漸近線的垂線,垂足為,若,則該雙曲線的離心率為()A. B.C. D.11.已知是橢圓上的一點(diǎn),則點(diǎn)到兩焦點(diǎn)的距離之和是()A.6 B.9C.14 D.1012.已知雙曲線的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若曲線在處的切線平行于x軸,則___________.14.在某次海軍演習(xí)中,已知甲驅(qū)逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護(hù)衛(wèi)艦在甲驅(qū)逐艦的正西方向,若測(cè)得乙護(hù)衛(wèi)艦在航母的南偏西45°方向,則甲驅(qū)逐艦與乙護(hù)衛(wèi)艦的距離為___________海里.15.已知、是橢圓的兩個(gè)焦點(diǎn),點(diǎn)在橢圓上,且,,則橢圓離心率是___________16.已知直線:與直線:平行,則的值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分){}是公差為1的等差數(shù)列,.正項(xiàng)數(shù)列{}的前n項(xiàng)和為,且.(1)求數(shù)列{}和數(shù)列}的通項(xiàng)公式;(2)在和之間插入1個(gè)數(shù),使,,成等差數(shù)列,在和之間插入2個(gè)數(shù),,使,,,成等差數(shù)列,…,在和之間插入n個(gè)數(shù),,…,,使,,,…,,成等差數(shù)列.①記,求{}的通項(xiàng)公式;②求的值.18.(12分)如圖,在四棱錐中,平面ABCD,,,且,,.(1)求證:平面PAC;(2)已知點(diǎn)M是線段PD上的一點(diǎn),且,當(dāng)三棱錐的體積為1時(shí),求實(shí)數(shù)的值.19.(12分)某中醫(yī)藥研究所研制出一種新型抗過敏藥物,服用后需要檢驗(yàn)血液抗體是否為陽性,現(xiàn)有n(n∈N*)份血液樣本,每個(gè)樣本取到的可能性均等,有以下兩種檢驗(yàn)方式:①逐份檢驗(yàn),需要檢驗(yàn)n次;②混合檢驗(yàn),將其中k(k∈N*,2≤k≤n)份血液樣本分別取樣混合在一起檢驗(yàn),若結(jié)果為陰性,則這k份的血液全為陰性,因而這k份血液樣本只需檢驗(yàn)一次就夠了,若檢驗(yàn)結(jié)果為陽性,為了明確這k份血液究竟哪份為陽性,就需要對(duì)這k份再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為k+1次.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽性還是陰性都是相互獨(dú)立的,且每份樣本是陽性的概率為p(0<p<1).(1)假設(shè)有5份血液樣本,其中只有兩份樣本為陽性,若采取逐份檢驗(yàn)的方式,求恰好經(jīng)過3次檢驗(yàn)就能把陽性樣本全部檢驗(yàn)出來的概率.(2)現(xiàn)取其中的k(k∈N*,2≤k≤n)份血液樣本,采用逐份檢驗(yàn)的方式,樣本需要檢驗(yàn)的次數(shù)記為ξ1;采用混合檢驗(yàn)的方式,樣本需要檢驗(yàn)的總次數(shù)記為ξ2.(i)若k=4,且,試運(yùn)用概率與統(tǒng)計(jì)的知識(shí),求p的值;(ii)若,證明:.20.(12分)已知函數(shù)(Ⅰ)解關(guān)于的不等式;(Ⅱ)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍21.(12分)已知直線l過點(diǎn)A(﹣3,1),且與直線4x﹣3y+t=0垂直(1)求直線l的一般式方程;(2)若直線l與圓C:x2+y2=m相交于點(diǎn)P,Q,且|PQ|=8,求圓C方程22.(10分)已知等差數(shù)列的前n項(xiàng)和為,若公差,且,,成等比數(shù)列.(1)求的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】設(shè)出雙曲線的一般方程,利用題設(shè)不等式,令二者平方,整理求得的,進(jìn)而可判斷出焦點(diǎn)的位置【詳解】漸近線方程為,,平方,兩邊除,,,雙曲線的焦點(diǎn)在軸上.故選B.【點(diǎn)睛】本題考查已知雙曲線的漸近線方程求雙曲線的方程,考查對(duì)雙曲線標(biāo)準(zhǔn)方程的理解與運(yùn)用,求解時(shí)要注意焦點(diǎn)落在軸或軸的特點(diǎn),考查學(xué)生分析問題和解決問題的能力2、C【解析】根據(jù)等差數(shù)列通項(xiàng)公式,列出方程組,求出的值,進(jìn)而求出令根據(jù)題意令,即可求解.【詳解】設(shè)第n實(shí)驗(yàn)室的建設(shè)費(fèi)用為萬元,其中,則為等差數(shù)列,設(shè)公差為d,則由題意可得,解得,則.令,即,解得,又,所以,,所以最多可以建設(shè)12個(gè)實(shí)驗(yàn)室.故選:C.3、C【解析】作垂直準(zhǔn)線于,垂直準(zhǔn)線于,作于,結(jié)合拋物線定義得出斜率為可求.【詳解】如圖:作垂直準(zhǔn)線于,垂直準(zhǔn)線于,作于,因?yàn)?,,,由拋物線的定義可知:,,,所以,直線斜率為:.故選:C.4、D【解析】應(yīng)用兩點(diǎn)式求直線斜率即可.【詳解】由已知坐標(biāo),直線的斜率為.故選:D5、B【解析】利用復(fù)數(shù)的除法運(yùn)算求出,進(jìn)而可得到.【詳解】,則,故,選B.【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算,考查了復(fù)數(shù)的模,屬于基礎(chǔ)題6、B【解析】由導(dǎo)數(shù)的乘法法則救是導(dǎo)函數(shù)后可得結(jié)論【詳解】解:由題意,,所以.故選:B7、A【解析】由題,可得是定義在上的偶函數(shù),且在上單調(diào)遞減,在上單調(diào)遞增,根據(jù)函數(shù)的單調(diào)性,即可判斷出的大小關(guān)系.【詳解】設(shè),由題,得,即,所以函數(shù)在上單調(diào)遞減,因?yàn)槭嵌x在R上的奇函數(shù),所以是定義在上的偶函數(shù),因此,,,即.故選:A【點(diǎn)睛】本題主要考查利用函數(shù)的單調(diào)性判斷大小的問題,其中涉及到構(gòu)造函數(shù)的運(yùn)用.8、A【解析】作出圖示,根據(jù)空間向量的加法運(yùn)算法則,即可得答案.【詳解】如圖示:連接OF,因?yàn)镻為EF中點(diǎn),,F(xiàn)為BC的中點(diǎn),則,故選:A9、D【解析】由題可知,曲線表示一個(gè)半圓,結(jié)合半圓的圖像和一次函數(shù)圖像即可求出的取值范圍.【詳解】由得,畫出圖像如圖:當(dāng)直線與半圓O相切時(shí),直線與半圓O有一個(gè)公共點(diǎn),此時(shí),,所以,由圖可知,此時(shí),所以,當(dāng)直線如圖過點(diǎn)A、B時(shí),直線與半圓O剛好有兩個(gè)公共點(diǎn),此時(shí),由圖可知,當(dāng)直線介于與之間時(shí),直線與曲線有兩個(gè)公共點(diǎn),所以.故選:D.10、D【解析】根據(jù)已知條件,找出,的齊次關(guān)系式即可得到雙曲線的離心率.【詳解】由題意得,,,在中,,因,故,在,由余弦定理得,即,計(jì)算得,故.故選:D.【點(diǎn)睛】雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于a,b,c的齊次式,結(jié)合轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)11、A【解析】根據(jù)橢圓的定義,可求得答案.【詳解】由可知:,由是橢圓上的一點(diǎn),則點(diǎn)到兩焦點(diǎn)的距離之和為,故選:A12、B【解析】根據(jù)a的值和離心率可求得b,從而求得漸近線方程.【詳解】由雙曲線的離心率為,知,則,即有,故,所以雙曲線C的漸近線方程為,即,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出導(dǎo)函數(shù)得到函數(shù)在時(shí)的導(dǎo)數(shù),由導(dǎo)數(shù)值為0求得a的值【詳解】由,得,則,∵曲線在點(diǎn)處的切線平行于x軸,∴,即.故答案為:14、【解析】利用正弦定理求得甲驅(qū)逐艦與乙護(hù)衛(wèi)艦的距離.【詳解】,設(shè)甲乙距離,由正弦定理得.故答案為:15、【解析】先由,根據(jù)橢圓的定義,求出,,再由余弦定理,根據(jù),即可列式求出離心率.【詳解】因?yàn)辄c(diǎn)在橢圓上,所以,又,所以,因,在中,由,根據(jù)余弦定理可得,解得(負(fù)值舍去)故答案為:.【點(diǎn)睛】本題主要考查求橢圓的離心率,屬于??碱}型.16、-1【解析】根據(jù)兩直線平行的條件列式求解即可.【詳解】由題意可知,的斜率,的斜率,∵,∴解得.故當(dāng)時(shí),直線:與直線:平行.故答案為:-1.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)①;②【解析】(1)利用等差數(shù)列的通項(xiàng)公式將展開化簡(jiǎn),求得首項(xiàng),可得;根據(jù)遞推式,確定,再寫出,兩式相減可求得;(2)①根據(jù)等差數(shù)列的性質(zhì),采用倒序相加法求得結(jié)果;②根據(jù)數(shù)列的通項(xiàng)的特征,采用錯(cuò)位相減法求和即可.【小問1詳解】設(shè)數(shù)列{}的公差為d,則d=1,由,即,可得,所以{}的通項(xiàng)公式為;由可知:當(dāng),得,當(dāng)時(shí),,兩式相減得;,即,所以{}是以為首項(xiàng),為公比的等比數(shù)列,故.【小問2詳解】①,兩式相加,得所以;②,,兩式相減得:,故.18、(1)證明見解析(2)3【解析】(1)證明出,且,從而證明出線面垂直;(2)先用椎體體積公式求出,利用體積之比得到線段之比,從而得到的值.【小問1詳解】證明:∵平面ABCD,且平面ABCD,∴.又因?yàn)?,且,∴四邊形ABCD為直角梯形.又因?yàn)?,,易得,,∴,?又因?yàn)锳C,PA是平面PAC的兩條相交直線,∴平面PAC.【小問2詳解】由(1)知且,∴.又∵平面ABCD,.又∵,∴,∴點(diǎn)M到平面ABC的距離為,∴,∴.19、(1);(2)(i);(ii)證明見解析.【解析】(1)設(shè)恰好經(jīng)過3次檢驗(yàn)就能把陽性樣本全部檢驗(yàn)出來為事件A,由古典概型概率計(jì)算公式可得答案;(2)(i)由已知,可能取值分別為1,,求解概率然后求期望推出關(guān)于的關(guān)系式;(ii)由,計(jì)算出,再由,構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷函數(shù)的最值可得答案..【詳解】(1)設(shè)恰好經(jīng)過3次檢驗(yàn)就能把陽性樣本全部檢驗(yàn)出來為事件A,所以前2次檢驗(yàn)中有一陽性有一陰性樣本第三次為陽性樣本,或者前3次均為陰性樣本,則.(2)(i),所以,可能取值分別為1,,,,因?yàn)榈茫驗(yàn)?,所以?(ii)因?yàn)椋桑╥)知,所以,設(shè),,所以在單調(diào)遞增,所以由于,所以,即,得證.【(4)(5)選做】20、(Ⅰ);(Ⅱ)【解析】(Ⅰ)用找零點(diǎn)法去絕對(duì)值,然后再解不等式.(Ⅱ)將原函數(shù)轉(zhuǎn)化為分段函數(shù),再結(jié)合函數(shù)圖像求得其最小值.將恒成立轉(zhuǎn)化為試題解析:(Ⅰ)或或或所以原不等式解集為(Ⅱ),由函數(shù)圖像可知,所以要使恒成立,只需考點(diǎn):1絕對(duì)值不等式;2恒成立問題;3轉(zhuǎn)化思想21、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直關(guān)系得過直線l的斜率,由點(diǎn)斜式化簡(jiǎn)即可求解l的一般式方程;(2)結(jié)合勾股定理建立弦心距(由點(diǎn)到直線距離公式求解),半弦長(zhǎng),圓半徑的基本關(guān)系,解出,即可求解圓C的方程【小問1詳解】因?yàn)橹本€l與直線4x﹣3y+t=0垂直,所以直線l的斜率為,故直線l的方程為,即3x+4y+5=0,因此直線l的一般式方程為3x+4y+5=0;【小問2詳解】圓C:x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)村土地整治挖掘機(jī)施工協(xié)議
- 社會(huì)福利彩鋼板安裝合同樣本
- 學(xué)校藥品器材安全警示標(biāo)識(shí)
- 實(shí)驗(yàn)室事故報(bào)告流程
- 電子產(chǎn)品生產(chǎn)資產(chǎn)管理指南
- 2024年藝人演藝事業(yè)發(fā)展規(guī)劃3篇
- 油氣開采挖機(jī)設(shè)備租賃合同
- 高鐵工程預(yù)應(yīng)力施工協(xié)議
- 軌道車物料成本優(yōu)化
- 鐵路建設(shè)臨時(shí)用電服務(wù)合同
- 醫(yī)院門窗工程施工方案與施工方法
- 短視頻實(shí)習(xí)運(yùn)營(yíng)助理
- 2024年中化石油福建有限公司招聘筆試參考題庫含答案解析
- 對(duì)加快推進(jìn)新型工業(yè)化的認(rèn)識(shí)及思考
- 移植后淋巴細(xì)胞增殖性疾病
- 風(fēng)光儲(chǔ)儲(chǔ)能項(xiàng)目PCS艙、電池艙吊裝方案
- 中醫(yī)跟師總結(jié)論文3000字(通用3篇)
- 《軍隊(duì)征集和招錄人員政治考核規(guī)定》
- 住宅小區(qū)視頻監(jiān)控清單及報(bào)價(jià)2020
- 電動(dòng)三輪車監(jiān)理細(xì)則
- 《鋁及鋁合金厚板殘余應(yīng)力測(cè)試方法 切縫翹曲法》
評(píng)論
0/150
提交評(píng)論