七年級數(shù)學(xué)上冊總復(fù)習知識點_第1頁
七年級數(shù)學(xué)上冊總復(fù)習知識點_第2頁
七年級數(shù)學(xué)上冊總復(fù)習知識點_第3頁
七年級數(shù)學(xué)上冊總復(fù)習知識點_第4頁
七年級數(shù)學(xué)上冊總復(fù)習知識點_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

系統(tǒng)復(fù)習輕松應(yīng)考

七年級數(shù)學(xué)上冊知識點

第一章有理數(shù)

1.1正數(shù)與負數(shù)

①正數(shù):大于0的數(shù)叫正數(shù)。(根據(jù)需要,有時在正數(shù)前面也加上“+”)

②負數(shù):在以前學(xué)過的0以外的數(shù)前面加上負號的數(shù)叫負數(shù)。與正數(shù)具有

相反的意義。

③。既不是正數(shù)也不是負數(shù)。。是正數(shù)和負數(shù)的分界,是唯一的中性數(shù)。

注意:搞清相反意義的量:南北;東西;上下;左右;上升下降;高低;增長減

少等

1.2有理數(shù)

1.有理數(shù)

(1)整數(shù):正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);

(2)分數(shù);正分數(shù)和負分數(shù)統(tǒng)稱分數(shù);

(3)有理數(shù):整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。

2.數(shù)軸

(1)定義:通常用一條直線上的點表示數(shù),這條直線叫數(shù)軸;

(2)數(shù)軸三要素:原點、正方向、單位長度;

(3)原點:在直線上任取一個點表示數(shù)0,這個點叫做原點;

(4)數(shù)軸上的點和有理數(shù)的關(guān)系:所有的有理數(shù)都可以用數(shù)軸上的點表示出來,

但數(shù)軸上的點,不都是表示有理數(shù)。

3.相反數(shù):

只有符號不同的兩個數(shù)叫做互為相反數(shù)。(例:2的相反數(shù)是-2;0的相反數(shù)是0)

4.絕對值:

(1)數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記作|a|。從幾何意

義上講,數(shù)的絕對值是兩點間的距離。

(2)一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對

值是0。兩個負數(shù),絕對值大的反而小。

1.3有理數(shù)的加減法

①有理數(shù)加法法則:

1.同號兩數(shù)相加,取相同的符號,并把絕對值相加。(同號取同,再相加)

2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕

對值減去較小的絕對值。互為相反數(shù)的兩個數(shù)相加得0。(異號取大,再相減)

3、一個數(shù)同0相加,仍得這個數(shù)。

②有理數(shù)減法法則:減去一個數(shù),等于加這個數(shù)的相反數(shù)。

1.4有理數(shù)的乘除法

①有理數(shù)乘法法則:

兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;

任何數(shù)同0相乘,都得0;

乘積是1的兩個數(shù)互為倒數(shù)。

乘法交換律/結(jié)合律/分配律

②有理數(shù)除法法則:

除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù);

兩數(shù)相除,同號得正,異號得負,并把絕對值相除;

0除以任何一個不等于0的數(shù),都得0。

1.5有理數(shù)的乘方

1.求n個相同因數(shù)的積的運算,叫乘方,乘方的結(jié)果叫幕。在a的n次方中,a

叫做底數(shù),n叫做指數(shù)。

負數(shù)的奇次幕是負數(shù),負數(shù)的偶次幕是正數(shù)。正數(shù)的任何次幕都是正數(shù),0的任

何次幕都是0o

2.有理數(shù)的混合運算法則:

先乘方,再乘除,最后加減;同級運算,從左到右進行;如有括號,先做括號內(nèi)

的運算,按小括號、中括號、大括號依次進行。

3.科學(xué)記數(shù)法:

把一個大于10的數(shù)表示成aX10的n次方的形式,使用的就是科學(xué)

記數(shù)法,注意a的范圍為iWa<10。

4.近似數(shù)四舍五入法

第二章整式的加減

2.1整式

1.單項式:由數(shù)字和字母乘積組成的式子。

系數(shù),單項式的次數(shù).單項式指的是數(shù)或字母的積的代數(shù)式.

單獨一個數(shù)或一個字母也是單項式.

因此,判斷代數(shù)式是否是單項式,關(guān)鍵要看代數(shù)式中數(shù)與字母是否是乘積關(guān)系,

即分母中不含有字母,若式子中含有加、減運算關(guān)系,其也不是單項式.

2.單項式的系數(shù):是指單項式中的數(shù)字因數(shù);

3、單項數(shù)的次數(shù):是指單項式中所有字母的指數(shù)的和.

4、多項式:幾個單項式的和。判斷代數(shù)式是否是多項式,關(guān)鍵要看代數(shù)式中的

每一項是否是單項式.每個單項式稱項,常數(shù)項,多項式的次數(shù)就是多項式中次

數(shù)最高的次數(shù)。多項式的次數(shù)是指多項式里次數(shù)最高項的次數(shù),這里是次數(shù)最

高項,其次數(shù)是6;多項式的項是指在多項式中,每一個單項式.特別注意多項

式的項包括它前面的性質(zhì)符號.

5.它們都是用字母表示數(shù)或列式表示數(shù)量關(guān)系。注意單項式和多項式的每一項都

包括它前面的符號。

6.單項式和多項式統(tǒng)稱為整式。

2.2整式的加減

1.同類項:所含字母相同,并且相同字母的指數(shù)也相同的項。與字母前面的系數(shù)

(W0)無關(guān)。

2.同類項必須同時滿足兩個條件:(1)所含字母相同;(2)相同字母的次數(shù)相

同,二者缺一不可.同類項與系數(shù)大小、字母的排列順序無關(guān)

3、合并同類項:把多項式中的同類項合并成一項。可以運用交換律,結(jié)合律和

分配律。

4.合并同類項法則:

合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變;

5.去括號法則:去括號,看符號:正變負不變

6、整式加減的一般步驟:

一去、二找、三合并

(1)如果遇到括號按去括號法則先去括號.(2)結(jié)合同類項.(3)合并同類

第三章一元一次方程

3.1一元一次方程

L方程是含有未知數(shù)的等式。

2.方程都只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程

叫做一元一次方程。

注意:判斷一個方程是否是一元一次方程要抓住三點:

1)未知數(shù)所在的式子是整式(方程是整式方程);

2)化簡后方程中只含有一個未知數(shù);

3)經(jīng)整理后方程中未知數(shù)的次數(shù)是1.

3.解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程

的解。

4.等式的性質(zhì):

1)等式兩邊同時加(或減)同一個數(shù)(或式子),結(jié)果仍相等;

2)等式兩邊同時乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等。

注意:運用性質(zhì)時,一定要注意等號兩邊都要同時變;運用性質(zhì)2時,一定要注

意。這個數(shù).

3.2、3.3解一元一次方程

①在實際解方程的過程中,以下步驟不一定完全用上,有些步驟還需重復(fù)使用.

因此在解方程時還要注意以下幾點:

去分母:

②在方程兩邊都乘以各分母的最小公倍數(shù),不要漏乘不含分母的項;分子是一

個整體,去分母后應(yīng)加上括號;去分母與分母化整是兩個概念,不能混淆;

去括號:

③遵從先去小括號,再去中括號,最后去大括號;不要漏乘括號的項;不要弄錯

符號;

④移項

⑤把含有未知數(shù)的項移到方程的一邊,其他項都移到方程的另一邊(移項要變

符號)移項要變號;

合并同類項:

不要丟項,不能像計算或化簡題那樣寫能連等的形式;

⑤系數(shù)化為1:

字母及其指數(shù)不變,系數(shù)化成1,在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程

的解。不要分子、分母搞顛倒。

3.4實際問題與一元一次方程

一.概念梳理

①⑴列一元一次方程解決實際問題的一般步驟是:

審題,特別注意關(guān)鍵的字和詞的意義,弄清相關(guān)數(shù)量關(guān)系;

②設(shè)出未知數(shù)(注意單位);

③根據(jù)相等關(guān)系列出方程;

④解這個方程;

⑤檢驗并寫出答案(包括單位名稱)。

⑵一些固定模型中的等量關(guān)系及典型例題參照一元一次方程應(yīng)用題專練學(xué)案。

二、思想方法(本單元常用到的數(shù)學(xué)思想方法小結(jié))

⑴建模思想:通過對實際問題中的數(shù)量關(guān)系的分析,抽象成數(shù)學(xué)模型,建立一元

一次方程的思想.

⑵方程思想:用方程解決實際問題的思想就是方程思想.

⑶化歸思想:

解一元一次方程的過程,實質(zhì)上就是利用去分母、去括號、移項、合并同類項、

未知數(shù)的系數(shù)化為1等各種同解變形,不斷地用新的更簡單

的方程來代替原來的方程,最后逐步把方程轉(zhuǎn)化為x=a的形

式.體現(xiàn)了化“未知”為“已知”的化歸思想.

⑷數(shù)形結(jié)合思想:

在列方程解決問題時,借助于線段示意圖和圖表等來分析數(shù)量關(guān)系,使問題中

的數(shù)量關(guān)系很直觀地展示出來,體現(xiàn)了數(shù)形結(jié)合的優(yōu)越性.

⑸分類思想:

在解含字母系數(shù)的方程和含絕對值符號的方程過程中往往需要分類討論,在解

有關(guān)方案設(shè)計的實際問題的過程中往往也要注意分類思想在過程中的運用.

三、數(shù)學(xué)思想方法的學(xué)習

1.解一元一次方程時,要明確每一步過程都作什么變形,應(yīng)該注意什么問題.

2.尋找實際問題的數(shù)量關(guān)系時,要善于借助直觀分析法,如表格法,直線分析

法和圖示分析法等.

3.列方程解應(yīng)用題的檢驗包括兩個方面:

⑴檢驗求得的結(jié)果是不是方程的解;

⑵是要判斷方程的解是否符合題目中的實際意義.

四、一元一次方程典型例題

例1.已知方程2xm—3+3x=5是一元一次方程,則m=.

解:由一元一次方程的定義可知m—3=1,解得m=4.或m—3=0,解得m=3

所以m=4或m=3

警示:很多同學(xué)做到這種題型時就想到指數(shù)是1,從而寫成m=l,這里一定

要注意x的指數(shù)是(m—3).

例2.已知是方程ax2—(2a—3)x+5=0的解,求a的值.

解:?;x=-2是方程ax2—(2a—3)x+5=0的解

.,.將x=—2代入方程,

得a-(-2)2-(2a-3)?(-2)+5=0

化簡,得4a+4a—6+5=0

a=L

8

點撥:要想解決這道題目,應(yīng)該從方程的解的定義入手,方程的解就是使方

程左右兩邊值相等的未知數(shù)的值,這樣把x=-2代入方程,然后再解關(guān)于a的一

元一次方程就可以了.

例3.解方程2(x+1)—3(4x—3)=9(1—x).

解:去括號,得2x+2—12x4-9=9—9x,

移項,得2+9—9=12x—2x—9x.

合并同類項,得2=x,即x=2.

點撥:此題的一般解法是去括號后將所有的未知項移到方程的左邊,已知項

移到方程的右邊,其實,我們在去括號后發(fā)現(xiàn)所有的未知項移到方程的左邊合

并同類項后系數(shù)不為正,為了減少計算的難度,我們可以根據(jù)等式的對稱性,

把所有的未知項移到右邊去,已知項移到方程的左邊,最后再寫成x=a的形式.

例4.解方程.

解析:方程兩邊乘以8,再移項合并同類項,得

同樣,方程兩邊乘以6,再移項合并同類項,得

方程兩邊乘以4,再移項合并同類項,得

方程兩邊乘以2,再移項合并同類項,得x=3.

說明:解方程時,遇到多重括號,一般的方法是從里往外或從外往里運用乘

法的分配律逐層去特號,而本題最簡捷的方法卻不是這樣,是通過方程兩邊分

別乘以一個數(shù),達到去分母和去括號的目的。

例5.解方程.

解析:方程可以化為

整理,得

去括號移項合并同類項,得一7x=ll,所以x=.

說明:一見到此方程,許多同學(xué)立即想到老師介紹的方法,那就是把分母化

成整數(shù),即各分數(shù)分子分母都乘以10,再設(shè)法去分母,其實,仔細觀察這個方程,

我們可以將分母化成整數(shù)與去分母兩步一步到位,第一個分數(shù)分子分母都乘以

2,第二個分數(shù)分子分母都乘以5,第三個分數(shù)分子分母都乘以10.

例6.解方程

解析:原方程可化為

方程即為一+—+—+—=i.

23344556

所以有

26

再來解之,就能很快得到答案:x=3.

知識鏈接:此題如報銷率

果直接去分母,或者通(%)

分,數(shù)字較大,運算煩

瑣,發(fā)現(xiàn)分母6=2X3,

12=3X4,20=4X5,

30=5X6,聯(lián)系到我們

小學(xué)曾做過這樣的分

式化簡題,故采用拆項

法解之比較簡便.

例7.參加某保險公

司的醫(yī)療保險,住院治

療的病人可享受分段

報銷,?保險公司制度

的報銷細則如下表,某

人今年住院治療后得

到保險公司報銷的金

額是1260元,那么此

人的實際醫(yī)療費是

()

住院醫(yī)療費(元)

不超過500的部分0

超過500―1000的60

部分

超過1000―300080

的部分

.......???

A.2600元B.2200元C2575元D.2525元

解析:設(shè)此人的實際醫(yī)療費為X元,根據(jù)題意列方程,得

500X0+500X60%+(x—500—500)X80%=1260.

解之,得x=2200,即此人的實際醫(yī)療費是2200元.故選B.

點撥:解答本題首先要弄清題意,讀懂圖表,從中應(yīng)理解醫(yī)療費是分段計算

累加求和而得的.因為500X60%<1260<2000X80%,所以可知判斷此人的醫(yī)

療費用應(yīng)按第一檔至第三檔累加計算.

例8.我市某縣城為鼓勵居民節(jié)約用水,對自來水用戶按分段計費方式收取

水費:若每月用水不超過7立方米,則按每立方米1元收費;若每月用水超過7

立方米,則超過部分按每立方米2元收費.如果某戶居民今年5月繳納了17元水

費,那么這戶居民今年5月的用水量為立方米.

解析:由于1X7V17,所以該戶居民今年5月的用水量超標.

設(shè)這戶居民5月的用水量為x立方米,可得方程:7Xl+2(x—7)=17,解

得x=12.

所以,這戶居民5月的用水量為12立方米.

例9.足球比賽的記分規(guī)則為:勝一場得3分,平一場得1分,輸一場得0分,

一支足球隊在某個賽季中共需比賽14場,現(xiàn)已比賽了8場,輸了1場,得17

分,請問:

⑴前8場比賽中,這支球隊共勝了多少場?

⑵這支球隊打滿14場比賽,最高能得多少分?

⑶通過對比賽情況的分析,這支球隊打滿14場比賽,得分不低于

29分,就可以達到預(yù)期的目標,請你分析一下,在后面的6場比賽中,這支球隊

至少要勝幾場,才能達到預(yù)期目標?

解析:⑴設(shè)這個球隊勝了x場,則平了(8-1-x)場,根據(jù)題意,

得:

3x+(8-1-x)=17.

解得x=5.

所以,前8場比賽中,這個球隊共勝了5場.

⑵打滿14場比賽最高能得17+(14-8)義3=35分.

⑶由題意知,以后的6場比賽中,只要得分不低于12分即可.

???勝不少于4場,一定能達到預(yù)期目標.而勝了3場,平3場,正好達到預(yù)期

目標.所以在以后的比賽中,這個球隊至少要勝3場.

例10.國家為了鼓勵青少年成才,特別是貧困家庭的孩子能上得起大學(xué),設(shè)

置了教育儲蓄,其優(yōu)惠在于,目前暫不征收利息稅.為了準備小雷5年后上大學(xué)

的學(xué)費6000元,他的父母現(xiàn)在就參加了教育儲蓄,小雷和他父母討論了以下兩

種方案:

⑴先存一個2年期,2年后將本息和再轉(zhuǎn)存一個3年期;

⑵直接存入一個5年期.

你認為以上兩種方案,哪種開始存入的本金較少?

[教育儲蓄(整存整取)年利率一年:2.25%;二年:2.27%;三年:3.24%;五

年:3.60%.]

解析:了解儲蓄的有關(guān)知識,掌握利息的計算方法,是解決這類問題的關(guān)鍵,

對于此題,我們可以設(shè)小雷父母開始存入x元.然后分別計算兩種方案哪種開始

存入的本金較少.

⑴2年后,本息和為x(1+2.70%X2)=L054x;

再存3年后,本息和要達到6000元,則1.054x(1+3.24%X3)=6000.

解得x^5188.

⑵按第二種方案,可得方程x(l+3.60%X5)=6000.

解得x^5085.

所以,按他們討論的第二種方案,開始存入的本金比較少.

例11.揚子江藥業(yè)集團生產(chǎn)的某種藥品包裝盒的側(cè)面展開圖如圖所示.如果長

方體盒子的長比寬多4,求這種藥品包裝盒的體積.

分析:從展開圖上的數(shù)據(jù)可以看出,展開圖中兩高與兩寬和為14cm,所以

一個寬與一個高的和為7cm,如果設(shè)這種藥品包裝盒的寬為xcm,則高為(7—x)

cm,因為長比寬多4cm,所以長為(x+4)cm,根據(jù)展開圖可知一個長與兩個高

的和為13cm,由此可列出方程.

解:設(shè)這種藥品包裝盒的寬為xcm,則高為(7—x)cm,長為(x+4)cm.

根據(jù)題意,得(x+4)+2(7—x)=13,

解得x=5,所以7—x=2,x+4=9.

故長為9cm,寬為5cm,高為2cm.

所以這種藥品包裝盒的體積為:9X5X2=90(cm3).

例12.某石油進口國這個月的石油進口量比上個月減少了5%,由于國

際油價上漲,這個月進口石油的費用反而比上個月增加了14%.求這個月的石油

價格相對上個月的增長率.

解:設(shè)這個月的石油價格相對上個月的增長率為x.根據(jù)題意得

(1+x)(1-5%)=1+14%

解得x=20%

答:這個月的石油價格相對上個月的增長率為20%.

點評:本題是一道增長率的應(yīng)用題.本月的進口石油的費用等于上個月的費

用加上增加的費用,也就是本月的石油進口量乘以本月的價格.設(shè)出未知數(shù),分

別表示出每一個數(shù)量,列出方程進行求解.列方程解應(yīng)用題的關(guān)鍵是找對等量關(guān)

系,然用代數(shù)式表示出其中的量,列方程解答.

例13.某市參加省初中數(shù)學(xué)競賽的選手平均分數(shù)為78分,其中參賽的男選手比

女選手多50%,而女選手的平均分比男選手的平均分數(shù)高10%,那么女選手的

平均分數(shù)為.

解析:總平均分數(shù)和參賽選手的人數(shù)及其得分有關(guān).因此,必須增設(shè)男選手或女

選手的人數(shù)為輔助未知數(shù).不妨設(shè)男選手的平均分數(shù)為X分,女選手的人數(shù)為a

人,那么女選手的平均分數(shù)為Llx分,男選手的人數(shù)為1.5a人,從而可列出方

程,解得x=75,所以Llx=82.5.即女選手的平均分數(shù)為82.5分.

第四章幾何圖形初步

4.1幾何圖形

1.幾何圖形:從形形色色的物體外形中得到的圖形叫做幾何圖形。

2.立體圖形:這些幾何圖形的各部分不都在同一個平面內(nèi)。

3、平面圖形:這些幾何圖形的各部分都在同一個平面內(nèi)。

4、雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯(lián)系的。

立體圖形中某些部分是平面圖形。

5.三視圖:從左面看,從正面看,從上面看

6.展開圖:

有些立體圖形是由一些平面圖形圍成的,將它們的表面適當剪開,可以展開成

平面圖形。這樣的平面圖形稱為相應(yīng)立體圖形的展開圖。

7、⑴幾何體簡稱體;包圍著體的是面;面面相交形成線;線線相交形成點;

⑵點無大小,線、面有曲直;

⑶幾何圖形都是由點、線、面、體組成的;

⑷點動成線,線動成面,面動成體;

⑸點:是組成幾何圖形的基本元素。

4.2直線、射線、線段

1.直線公理:經(jīng)過兩點有一條直線,并且只有一條直線。即:兩點確定一條直線。

2.當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交,這個公共點叫

做它們的交點。

3.把一條線段分成相等的兩條線段的點,叫做這條線段的中點。

4、線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。

5.連接兩點間的線段的長度,叫做這兩點的距離。

6.直線的表示方法:如圖的直線可記作直線AB或記作直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論