




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆山西省大同市鐵路第一中學高二上數(shù)學期末綜合測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線與橢圓交于兩點,以線段為直徑的圓恰好經(jīng)過橢圓的左焦點,則此橢圓的離心率為()A B.C. D.2.設正方體的棱長為,則點到平面的距離是()A. B.C. D.3.某幾何體的三視圖如圖所示,則該幾何體的體積為A.54 B.45C.27 D.814.已知拋物線的焦點為,準線為,是上一點,是直線與拋物線的一個交點,若,則()A. B.3C. D.25.,則()A. B.C. D.6.已知定義在上的函數(shù)滿足:,且,則的解集為()A. B.C. D.7.如圖是函數(shù)的導數(shù)的圖象,則下面判斷正確的是()A.在內是增函數(shù)B.在內是增函數(shù)C.在時取得極大值D.在時取得極小值8.已知數(shù)列滿足:對任意的均有成立,且,,則該數(shù)列的前2022項和()A0 B.1C.3 D.49.“”是“方程是圓的方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.在等差數(shù)列中,,表示數(shù)列的前項和,則()A.43 B.44C.45 D.4611.在下列各圖中,每個圖的兩個變量具有相關關系的圖是()A.(1)(2) B.(1)(3)C.(2) D.(2)(3)12.在中,,,且BC邊上的高為,則滿足條件的的個數(shù)為()A.3 B.2C.1 D.0二、填空題:本題共4小題,每小題5分,共20分。13.若兩平行直線3x-2y-1=0,6x+ay+c=0之間的距離為,則的值為________14.已知向量,,若,則______15.已知直線,,若,則實數(shù)______16.點P是棱長為1的正方體ABCD﹣A1B1C1D1的底面A1B1C1D1上一點,則的取值范圍是__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角A,B,C所對的邊分別為a,b,c,且.(1)求角A的大??;(2)若,且的面積為,求的周長.18.(12分)已知橢圓的左、右頂點坐標分別是,,短軸長等于焦距.(1)求橢圓的方程;(2)若直線與橢圓相交于兩點,線段的中點為,求.19.(12分)已知焦點為F的拋物線上一點到F的距離是4(1)求拋物線C的方程(2)若不過原點O的直線l與拋物線C交于A,B兩點(A,B位于x軸兩側),C的準線與x軸交于點E,直線與分別交于點M,N,若,證明:直線l過定點20.(12分)設函數(shù)(1)求函數(shù)的單調區(qū)間;(2)若有兩個零點,,求的取值范圍,并證明:21.(12分)已知四邊形是空間直角坐標系中的一個平行四邊形,且,,(1)求點的坐標;(2)求平行四邊形的面積22.(10分)已知數(shù)列{an}是一個等差數(shù)列,且a2=1,a5=-5.(1)求{an}的通項an;(2)求{an}前n項和Sn的最大值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意作出示意圖,根據(jù)圓的性質以及直線的傾斜角求解出的長度,再根據(jù)橢圓的定義求解出的關系,則橢圓離心率可求.【詳解】設橢圓的左右焦點分別為,如下圖:因為以線段為直徑的圓恰好經(jīng)過橢圓的左焦點,所以且,所以,又因為的傾斜角為,所以,所以為等邊三角形,所以,所以,因為,所以,所以,所以,所以,故選:D.2、D【解析】建立空間直角坐標系,根據(jù)空間向量所學點到面的距離公式求解即可.【詳解】建立如下圖所示空間直角坐標系,以為坐標原點,所在直線為軸,所在直線為軸,所在直線為軸.因為正方體的邊長為4,所以,,,,,所以,,,設平面的法向量,所以,,即,設,所以,,即,設點到平面的距離為,所以,故選:D.3、B【解析】由三視圖可得該幾何體是由平行六面體切割掉一個三棱錐而成,直觀圖如圖所示,所以該幾何體的體積為故選B點睛:本題考查了組合體的體積,由三視圖還原出幾何體,由四棱柱的體積減去三棱錐的體積.4、D【解析】根據(jù)拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設與軸交點為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點睛】本小題主要考查拋物線定義,考查數(shù)形結合的數(shù)學思想方法,屬于基礎題.5、B【解析】求出,然后可得答案.【詳解】,所以故選:B6、A【解析】令,利用導數(shù)可判斷其單調性,從而可解不等式.【詳解】設,則,故為上的增函數(shù),而可化為即,故即,所以不等式的解集為,故選:A.7、B【解析】根據(jù)圖象判斷的單調性,由此求得的極值點,進而確定正確選項.【詳解】由圖可知,在區(qū)間上,單調遞減;在區(qū)間上,單調遞增.所以不是的極值點,是的極大值點.所以ACD選項錯誤,B選項正確.故選:B8、A【解析】根據(jù)可知,數(shù)列具有周期性,即可解出【詳解】因為,所以,即,所以數(shù)列中的項具有周期性,,由,,依次對賦值可得,,一個周期內項的和為零,而,所以數(shù)列的前2022項和故選:A9、A【解析】利用充分條件和必要條件的定義判斷.【詳解】若方程表示圓,則,即,解得或,故“”是“方程是圓的方程”的充分不必要條件,故選:A10、C【解析】根據(jù)等差數(shù)列的性質,求得,結合等差數(shù)列的求和公式,即可求解.【詳解】由等差數(shù)列中,滿足,根據(jù)等差數(shù)列的性質,可得,所以,則.故選:C.11、D【解析】根據(jù)圖形可得(1)具有函數(shù)關系;(2)(3)的散點分布在一條直線或曲線附近,具有相關關系;(4)的散點雜亂無章,不具有相關關系.【詳解】對(1),所有的點都在曲線上,故具有函數(shù)關系;對(2),所有的散點分布在一條直線附近,具有相關關系;對(3),所有的散點分布在一條曲線附近,具有相關關系;對(4),所有的散點雜亂無章,不具有相關關系.故選:D.12、B【解析】利用等面積法求得,再利用正弦定理求得,利用內角和的關系及兩角和差化積公式,二倍角公式轉化為,再利用正弦函數(shù)的性質求滿足條的的個數(shù),即可求解.【詳解】由三角形的面積公式知,即由正弦定理知所以,即,即,即利用兩角和的正弦公式結合二倍角公式化簡得又,則,,且由正弦函數(shù)的性質可知,滿足的有2個,即滿足條件的的個數(shù)為2.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、±1【解析】由題意得=≠,∴a=-4且c≠-2,則6x+ay+c=0可化為3x-2y+=0,由兩平行線間的距離公式,得=,解得c=2或c=-6,∴=±114、【解析】根據(jù)向量平行求得,由此求得.【詳解】由于,所以.故答案為:15、【解析】由直線垂直可得到關于實數(shù)a的方程,解方程即可.【詳解】由直線垂直可得:,解得:.故答案為:16、[﹣,0]【解析】建立空間直角坐標系,設出點P的坐標為(x,y,z),則由題意可得0≤x≤1,0≤y≤1,z=1,計算?x2﹣x,利用二次函數(shù)的性質求得它的值域即可【詳解】解:以點D為原點,以DA所在的直線為x軸,以DC所在的直線為y軸,以DD1所在的直線為z軸,建立空間直角坐標系,如圖所示;則點A(1,0,0),C1(0,1,1),設點P的坐標為(x,y,z),由題意可得0≤x≤1,0≤y≤1,z=1;∴(1﹣x,﹣y,﹣1),(﹣x,1﹣y,0),∴?x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y,由二次函數(shù)的性質可得,當x=y(tǒng)時,?取得最小值為;當x=0或1,且y=0或1時,?取得最大值為0,則?的取值范圍是[,0]故答案為:[,0]【點睛】本題主要考查了向量在幾何中的應用與向量的數(shù)量積運算問題,是綜合性題目三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由,根據(jù)正弦定理化簡得,利用余弦定理求得,即可求解;(2)由的面積,求得,結合余弦定理,求得,即可求解.【小問1詳解】解:因為,所以.由正弦定理得,可得,所以,因為,所以.【小問2詳解】解:由的面積,所以.由余弦定理得,所以,所以,所以的周長為.18、(1);(2).【解析】(1)由橢圓頂點可知,又短軸長等于焦距可知,求出,即可寫出橢圓方程(2)根據(jù)“點差法”可求直線的斜率,寫出直線方程,聯(lián)立橢圓方程可得,,代入弦長公式即可求解.【詳解】(1)依題意,解得.故橢圓方程為.(2)設的坐標分別為,,直線的斜率顯然存在,設斜率為,則,兩式相減得,整理得.因為線段的中點為,所以,所以直線的方程為,聯(lián)立,得,則,,故.【點睛】本題主要考查了橢圓的標準方程及簡單幾何性質,“點差法”,弦長公式,屬于中檔題.19、(1);(2)證明過程見解析.【解析】(1)利用拋物線的定義進行求解即可;(2)設出直線l的方程,與拋物線方程聯(lián)立,根據(jù)一元二次方程的根與系數(shù)關系進行求解證明即可.【小問1詳解】該拋物線的準線方程為,因為點到F的距離是4,所以有,所以拋物線C的方程為:;【小問2詳解】該拋物線的準線方程為,設直線l的方程為:,與拋物線方程聯(lián)立,得,不妨設,因此,直線的斜率為:,所以方程為:,當時,,即,同理,因為,所以有,而,所以有,所以直線l的方程為:,因此直線l恒過.【點睛】關鍵點睛:把直線l的方程為:,利用一元二次方程根與系數(shù)關系是解題的關鍵.20、(1)答案見詳解(2),證明見解析【解析】(1)求導得,,分類討論參數(shù)a的范圍即可判斷單調區(qū)間;(2)設,,聯(lián)立整理得,構造得,構造函數(shù),結合導數(shù)判斷單調性,進而得證.小問1詳解】由,,可得,當時,,所以在上單調遞增;當時,令,得,令,得所以在單調遞減,在單調遞增;【小問2詳解】證明:因為函數(shù)有兩個零點,由(1)得,此時的遞增區(qū)間為,遞減區(qū)間為,有極小值.所以,可得,所以.由(1)可得的極小值點為,則不妨設.設,,則則,即,整理得,所以,設,則,所以在上單調遞減,所以,所以,即.21、(1);(2)【解析】(1)由題設可得,結合向量的共線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國餐飲連鎖行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略研究報告
- 中國電路保護裝置行業(yè)市場發(fā)展現(xiàn)狀及投資方向研究報告
- 2025-2030年堅果漢堡行業(yè)跨境出海戰(zhàn)略研究報告
- 2025-2030年商用電熱保溫煲企業(yè)制定與實施新質生產(chǎn)力戰(zhàn)略研究報告
- 2025年球磨機板行業(yè)深度研究分析報告
- 2025-2030年成長鈣鎂鋅奶昔行業(yè)深度調研及發(fā)展戰(zhàn)略咨詢報告
- 2025年導熱橡膠項目投資可行性研究分析報告
- 2025-2030年臺球俱樂部會員管理系統(tǒng)企業(yè)制定與實施新質生產(chǎn)力戰(zhàn)略研究報告
- 2025-2030年手術室輔助工作臺企業(yè)制定與實施新質生產(chǎn)力戰(zhàn)略研究報告
- 2025-2030年復古皮質游戲桌行業(yè)跨境出海戰(zhàn)略研究報告
- 學校保潔服務投標方案(技術標)
- 《社區(qū)工作者培訓課件 新浪版》
- 教育信息化背景下的學術研究趨勢
- 人教版小學數(shù)學(2024)一年級下冊第五單元100以內的筆算加、減法綜合素養(yǎng)測評 B卷(含答案)
- 會計法律法規(guī)答題答案
- 2025江蘇常州溧陽市部分機關事業(yè)單位招聘編外人員78人歷年高頻重點提升(共500題)附帶答案詳解
- 2025年教科版科學五年級下冊教學計劃(含進度表)
- 歐盟一般食品法Regulation-(EC)-No-178-2002中文翻譯
- 2024屆高考語文二輪復習詩歌專題訓練文學短評類題型(含解析)
- 春節(jié)安全生產(chǎn)開工第一課培訓課件內容
- 2024年度體育賽事贊助合同:運動員代言與贊助權益2篇
評論
0/150
提交評論