2025屆遼寧大連市高二數(shù)學第一學期期末統(tǒng)考試題含解析_第1頁
2025屆遼寧大連市高二數(shù)學第一學期期末統(tǒng)考試題含解析_第2頁
2025屆遼寧大連市高二數(shù)學第一學期期末統(tǒng)考試題含解析_第3頁
2025屆遼寧大連市高二數(shù)學第一學期期末統(tǒng)考試題含解析_第4頁
2025屆遼寧大連市高二數(shù)學第一學期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆遼寧大連市高二數(shù)學第一學期期末統(tǒng)考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“”是“方程為雙曲線方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.設函數(shù)在定義域內可導,的圖像如圖所示,則導函數(shù)的圖象可能為()A. B.C. D.3.已知直線的一個方向向量,平面的一個法向量,若,則()A.1 B.C.3 D.4.若,則=()A.244 B.1C. D.5.雙曲線的焦點坐標是()A. B.C. D.6.如圖,平行六面體中,為的中點,,,,則()A. B.C. D.7.已知雙曲線的左、右焦點分別為,,過作圓的切線分別交雙曲線的左、右兩支于,,且,則雙曲線的漸近線方程為()A. B.C. D.8.下列說法中正確的是()A.命題“若,則”的否命題是真命題;B.若為真命題,則為真命題;C.“”是“”的充分條件;D.若命題:“,”,則:“,”9.在直三棱柱中,底面是等腰直角三角形,,點在棱上,且,則與平面所成角的正弦值為()A. B.C. D.10.已知球O的半徑為2,球心到平面的距離為1,則球O被平面截得的截面面積為()A. B.C. D.11.在等差數(shù)列中,為其前n項和,,則()A.55 B.65C.15 D.6012.已知雙曲線的離心率,點是拋物線上的一動點,到雙曲線的上焦點的距離與到直線的距離之和的最小值為,則該雙曲線的方程為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,則其通項公式_______14.若,則與向量同方向的單位向量的坐標為____________.15.將參加冬季越野跑的名選手編號為:,采用系統(tǒng)抽樣方法抽取一個容量為的樣本,把編號分為組后,第一組的到這個編號中隨機抽得的號碼為,這名選手穿著三種顏色的衣服,從到穿紅色衣服,從到穿白色衣服,從到穿黃色衣服,則抽到穿白色衣服的選手人數(shù)為__________16.設分別是平面的法向量,若,則實數(shù)的值是________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在空間四邊形中,分別是的中點,分別是上的點,滿足.(1)求證:四點共面;(2)設與交于點,求證:三點共線.18.(12分)已知圓:,點A是圓上一動點,點,點是線段的中點.(1)求點的軌跡方程;(2)直線過點且與點的軌跡交于A,兩點,若,求直線的方程.19.(12分)已知等差數(shù)列的前n項和為,若公差,且,,成等比數(shù)列.(1)求的通項公式;(2)求數(shù)列的前n項和.20.(12分)已知函數(shù).(1)求函數(shù)的極值;(2)若對恒成立,求實數(shù)a的取值范圍.21.(12分)如圖,四棱錐中,底面為梯形,底面,,,,.(1)求證:平面平面;(2)設為上一點,滿足,若直線與平面所成的角為,求二面角的余弦值.22.(10分)在平面直角坐標系xOy中,曲線1與坐標軸的交點都在圓C上(1)求圓C的方程;(2)設過點P(0,-2)的直線l與圓C交于A,B兩點,且AB=2,求l的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先求出方程表示雙曲線時滿足的條件,然后根據(jù)“小推大”的原則進行判斷即可.【詳解】因方程為雙曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.2、D【解析】根據(jù)函數(shù)的單調性得到導數(shù)的正負,從而得到函數(shù)的圖象.【詳解】由函數(shù)的圖象可知,當時,單調遞增,則,所以A選項和C選項錯誤;當時,先增,再減,然后再增,則先正,再負,然后再正,所以B選項錯誤.故選:D.【點睛】本題主要考查函數(shù)的單調性和導數(shù)的關系,意在考查學生對該知識的掌握水平,屬于基礎題.一般地,函數(shù)在某個區(qū)間可導,,則在這個區(qū)間是增函數(shù);函數(shù)在某個區(qū)間可導,,則在這個區(qū)間是減函數(shù).3、D【解析】由向量平行充要條件代入解之即可解決.【詳解】由,可知,則有,解之得故選:D4、D【解析】分別令代入已知關系式,再兩式求和即可求解.【詳解】根據(jù),令時,整理得:令x=2時,整理得:由①+②得,,所以.故選:D.5、B【解析】根據(jù)雙曲線的方程,求得,結合雙曲線的幾何性質,即可求解.【詳解】由題意,雙曲線,可得,所以,且雙曲線的焦點再軸上,所以雙曲線的焦點坐標為.故選:B.6、B【解析】先用向量與表示,然后用向量表示向量與,即可得解【詳解】解:為的中點,故選:【點睛】本題考查了平面向量基本定理的應用,解決本題的關鍵是熟練運用向量的加法、減法及實數(shù)與向量的積的運算,屬于基礎題7、D【解析】直線的斜率為,計算,,利用余弦定理得到,化簡知,得到答案【詳解】由題意知直線的斜率為,,又,由雙曲線定義知,,.由余弦定理:,,即,即,解得.故雙曲線漸近線的方程為.故答案選D【點睛】本題考查了雙曲線的漸近線,與圓的關系,意在考查學生的綜合應用能力和計算能力.8、C【解析】A.寫出原命題的否命題,即可判斷其正誤;B.根據(jù)為真命題可知的p,q真假情況,由此判斷的真假;C.看命題“”能否推出“”,即可判斷;D.根據(jù)含有一個量詞的命題的否定的要求,即可判斷該命題的正誤.【詳解】A.命題“若x=y,則sinx=siny”,其否命題為若“,則”為假命題,因此A不正確;B.命題“”為真命題,則p,q中至少有一個為真命題,當二者為一真一假時,為假命題,故B不正確C.命題“若,則”為真命題,故C正確;D.命題:“,”,為特稱命題,其命題的否定:“,”,故D錯誤,故選:C9、C【解析】取AC的中點M,過點M作,且使得,進而證明平面,然后判斷出是與平面所成的角,最后求出答案.【詳解】如圖,取AC的中點M,因為,則,過點M作,且使得,則四邊形BDNM是平行四邊形,所以.由題意,平面ABC,則平面ABC,而平面ABC,所以,又,所以平面,而所以平面,連接DA,NA,則是與平面所成的角.而,于是,.故選:.10、B【解析】根據(jù)球的性質可求出截面圓的半徑即可求解.【詳解】由球的性質可知,截面圓的半徑為,所以截面的面積.故選:B11、B【解析】根據(jù)等差數(shù)列求和公式結合等差數(shù)列的性質即可求得.【詳解】解析:因為為等差數(shù)列,所以,即,.故選:B12、B【解析】先根據(jù)離心率得,再根據(jù)拋物線定義得最小值為(為拋物線焦點),解得,即得結果.【詳解】因為雙曲線的離心率,所以,設為拋物線焦點,則,拋物線準線方程為,因此到雙曲線的上焦點的距離與到直線的距離之和等于,因為,所以,即,即雙曲線的方程為,選B.【點睛】本題考查雙曲線方程、離心率以及拋物線定義,考查基本分析求解能力,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】構造法可得,由等比數(shù)列的定義寫出的通項公式,進而可得.【詳解】令,則,又,∴,故,而,∴是公比為,首項為,則,∴.故答案為:.14、【解析】由空間向量的模的計算求得向量的模,再由單位向量的定義求得答案.【詳解】解:因為,所以,所以與向量同方向的單位向量的坐標為,故答案為:.15、【解析】,所以抽到穿白色衣服的選手號碼為,共16、4【解析】根據(jù)分別是平面的法向量,且,則有求解.【詳解】因為分別是平面的法向量,且所以所以解得故答案為:4【點睛】本題主要考查空間向量垂直,還考查了運算求解的能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】【小問1詳解】連接AC,分別是的中點,.在中,,所以四點共面.【小問2詳解】,所以,又平面平面,同理平面,為平面與平面的一個公共點.又平面平面,即三點共線.18、(1);(2)x=1或y=1.【解析】(1)設線段中點為,點,用x,y表示,代入方程即可;(2)分l斜率存在和不存在進行討論,根據(jù)弦長求出l方程.【小問1詳解】設線段中點為,點,,,,,,即點C的軌跡方程為.【小問2詳解】直線l的斜率不存在時,l為x=1,代入得,則弦長滿足題意;直線l斜率存在時,設直線l斜率為k,其方程為,即,圓的圓心到l的距離,則;綜上,l為x=1或y=1.19、(1);(2).【解析】(1)由等差數(shù)列的通項公式、前n項和公式結合等比數(shù)列的性質列方程可得數(shù)列首項與公差,即可得解;(2)由,結合裂項相消法即可得解.【詳解】(1)因為數(shù)列為等差數(shù)列,,,,成等比數(shù)列,所以,所以,即,又因為,所以,所以;(2)因為,所以.【點睛】本題考查了等差數(shù)列與等比數(shù)列的綜合應用及裂項相消法的應用,考查了運算求解能力,屬于中檔題.20、(1)極大值為,無極小值(2)【解析】(1)求函數(shù)的導數(shù),根據(jù)導數(shù)的正負判斷極值點,代入原函數(shù)計算即可;(2)將變形,即對恒成立,然后構造函數(shù),利用求導判定函數(shù)的單調性,進而確定實數(shù)a的取值范圍..【小問1詳解】對函數(shù)求導可得:,可知當時,時,,即可知在上單調遞增,在上單調遞減由上可知,的極大值為,無極小值【小問2詳解】由對恒成立,當時,恒成立;當時,對恒成立,可變形為:對恒成立,令,則;求導可得:由(1)知即恒成立,當時,,則在上單調遞增;又,因,故,,所以在上恒成立,當時,令,得,當時,在上單調遞增,當時,在上單調遞減,從而可知的最大值為,即,因此,對都有恒成立,所以,實數(shù)a的取值范圍是.21、(1)證明見解析;(2).【解析】(1)由三角形的邊角關系可證,再由底面,可得.即可證明底面,由面面垂直的判定定理得證.(2)以點為坐標原點,,,分別為,,軸建立空間坐標系,利用空間向量法求出二面角的余弦值.【詳解】解析:(1)證明:由,,,,,所以,又,∴,∴,∴,因為底面,底面,∴.因為,底面,底面,底面,底面,所以面面.(2)由(1)可知為與平面所成的角,∴,∴,,由及,可得,,以點為坐標原點,,,分別為,,軸建立空間坐標系,則,,,,設平面的法向量為,則,,取,設平面的法向量為,則,,取,所以,所以二面角余弦值為.【點睛】本題考查面面垂直的判定,線面垂直的性質,利用空間向量法求二面角的余弦值,屬于中檔題.22、(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論