版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆河南省商丘市重點中學數(shù)學高一上期末質量跟蹤監(jiān)視試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)為定義在R上的單調函數(shù),則實數(shù)m的取值范圍是()A. B.C. D.2.下列函數(shù)中,既是偶函數(shù)又在區(qū)間0,+∞A.y=-x2C.y=x33.已知直線的斜率為1,則直線的傾斜角為A. B.C. D.4.已知偶函數(shù)在區(qū)間單調遞減,則滿足的x取值范圍是A. B.C. D.5.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積為()A. B.C. D.6.函數(shù)的圖象的一個對稱中心是()A B.C. D.7.如圖,AB是⊙O直徑,C是圓周上不同于A、B的任意一點,PA與平面ABC垂直,則四面體P_ABC的四個面中,直角三角形的個數(shù)有()A.4個 B.3個C.1個 D.2個8.函數(shù)的減區(qū)間為()A. B.C. D.9.已知集合,,則()A. B.C. D.10.已知,,則下列不等式正確的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.寫出一個同時滿足以下條件的函數(shù)___________;①是周期函數(shù);②最大值為3,最小值為;③在上單調12.若,則______.13.已知定義在R上的函數(shù)滿足,且當時,,若對任都有,則m的取值范圍是_________14.學校某研究性學習小組在對學生上課注意力集中情況的調查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時間(單位:分鐘)之間的關系滿足如圖所示的圖象,當時,圖象是二次函數(shù)圖象的一部分,其中頂點,過點;當時,圖象是線段BC,其中.根據(jù)專家研究,當注意力指數(shù)大于62時,學習效果最佳.要使得學生學習效果最佳,則教師安排核心內容的時間段為____________.(寫成區(qū)間形式)15.已知函數(shù)的零點為1,則實數(shù)a的值為______16.在空間直角坐標系中,點在平面上的射影為點,在平面上的射影為點,則__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(其中),函數(shù)(其中).(1)若且函數(shù)存在零點,求的取值范圍;(2)若是偶函數(shù)且函數(shù)的圖象與函數(shù)的圖象只有一個公共點,求實數(shù)的取值范圍.18.已知(1)作出函數(shù)的圖象,并寫出單調區(qū)間;(2)若函數(shù)有兩個零點,求實數(shù)的取值范圍19.已知向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π](1)若與共線,求x的值;(2)若⊥,求x的值;(3)記f(x)=?,當f(x)取得最小值時,求x的值20.已知,其中為奇函數(shù),為偶函數(shù).(1)求與的解析式;(2)判斷函數(shù)在其定義域上的單調性(不需證明);(3)若不等式恒成立,求實數(shù)的取值范圍.21.已知,命題:,;命題:,.(1)若是真命題,求的最大值;(2)若是真命題,是假命題,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由在單調遞增可得函數(shù)為增函數(shù),保證兩個函數(shù)分別單調遞增,且連接點處左端小于等于右端的函數(shù)值即可【詳解】由題意,函數(shù)為定義在R上的單調函數(shù)且在單調遞增故在單調遞增,即且在處,綜上:解得故選:B2、A【解析】根據(jù)基本函數(shù)的性質和偶函數(shù)的定義分析判斷即可【詳解】對于A,因為f(x)=-(-x)2=-x2=f(x),所以y=-x2是偶函數(shù),對于B,y=2x是非奇非偶函數(shù),所以對于C,因為f(-x)=(-x)3=-x3對于D,y=lnx=lnx,x>0故選:A3、A【解析】設直線的傾斜角為,則由直線的斜率,則故故選4、D【解析】根據(jù)題意,結合函數(shù)的奇偶性與單調性分析可得,解不等式可得x的取值范圍,即可得答案【詳解】根據(jù)題意,偶函數(shù)在區(qū)間單調遞減,則在上為增函數(shù),則,解可得:,即x的取值范圍是;故選D【點睛】本題考查函數(shù)奇偶性與單調性綜合應用,注意將轉化為關于x不等式,屬于基礎題5、D【解析】借助正方體模型還原幾何體,進而求解表面積即可.【詳解】解:如圖,在邊長為的正方體模型中,將三視圖還原成直觀圖為三棱錐,其中,均為直角三角形,為等邊三角形,,所以該幾何體的表面積為故選:D6、B【解析】利用正弦函數(shù)的對稱性質可知,,從而可得函數(shù)的圖象的對稱中心為,再賦值即可得答案【詳解】令,,解得:,.所以函數(shù)的圖象的對稱中心為,.當時,就是函數(shù)的圖象的一個對稱中心,故選:B.7、A【解析】AB是圓O的直徑,可得出三角形是直角三角形,由圓O所在的平面,根據(jù)線垂直于面性質得出三角形和三角形是直角三角形,同理可得三角形是直角三角形.【詳解】∵AB是圓O的直徑,∴∠ACB=,即,三角形是直角三角形.又∵圓O所在的平面,∴三角形和三角形是直角三角形,且BC在此平面中,∴平面,∴三角形是直角三角形.綜上,三角形,三角形,三角形,三角形.直角三角形數(shù)量為4.故選:A.【點睛】考查線面垂直的判定定理和應用,知識點較為基礎.需多理解.難度一般.8、D【解析】先氣的函數(shù)的定義域為,結合二次函數(shù)性質和復合函數(shù)的單調性的判定方法,即可求解.【詳解】由題意,函數(shù)有意義,則滿足,即,解得,即函數(shù)的定義域為,令,可得其開口向下,對稱軸的方程為,所以函數(shù)在區(qū)間單調遞增,在區(qū)間上單調遞減,根據(jù)復合函數(shù)的單調性,可得函數(shù)在上單調遞減,即的減區(qū)間為.故選:D.9、D【解析】利用對數(shù)函數(shù)與指數(shù)函數(shù)的性質化簡集合,再根據(jù)集合交集的定義求解即可.【詳解】因為,,所以,,則,故選:D.10、C【解析】利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調性即可求解.【詳解】由為單調遞減函數(shù),則,為單調遞減函數(shù),則,為單調遞增函數(shù),則故.故選:C【點睛】本題考查了指數(shù)函數(shù)、對數(shù)函數(shù)的單調性比較指數(shù)式、對數(shù)式的大小,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、(答案不唯一)【解析】根據(jù)余弦函數(shù)的性質,構造滿足題意的函數(shù),由此即可得到結果.詳解】由題意可知,,因為的周期為,滿足條件①;又,所以,滿足條件②;由于函數(shù)在區(qū)間上單調遞減,所以區(qū)間上單調遞減,故滿足條件③.故答案為:.12、【解析】根據(jù)指對互化,指數(shù)冪的運算性質,以及指數(shù)函數(shù)的單調性即可解出【詳解】由得,即,解得故答案為:13、,【解析】作出當,時,的圖象,將其圖象分別向左、向右平移個單位(橫坐標不變,縱坐標變?yōu)樵瓉淼幕?倍),得到函數(shù)的圖象,令,求得的最大值,可得所求范圍【詳解】解:因為滿足,即;又由,可得,畫出當,時,的圖象,將在,的圖象向右平移個單位(橫坐標不變,縱坐標變?yōu)樵瓉淼?倍),再向左平移個單位(橫坐標不變,縱坐標變?yōu)樵瓉淼谋叮?,由此得到函?shù)的圖象如圖:當,時,,,,又,所以,令,由圖像可得,則,解得,所以當時,滿足對任意的,,都有,故的范圍為,故答案為:,14、【解析】當,時,設,把點代入能求出解析式;當,時,設,把點、代入能求出解析式,結合題設條件,列出不等式組,即可求解.詳解】當x∈(0,12]時,設,過點(12,78)代入得,a則f(x),當x∈(12,40]時,設y=kx+b,過點B(12,78)、C(40,50)得,即,由題意得,或得4<x≤12或12<x<28,所以4<x<28,則老師就在x∈(4,28)時段內安排核心內容,能使得學生學習效果最佳,故答案為:(4,28)【點睛】本題考查解析式的求法,考查不等式組的解法,解題時要認真審題,注意待定系數(shù)法的合理運用,屬于中檔題15、【解析】利用求得的值.【詳解】由已知得,即,解得.故答案為:【點睛】本小題主要考查函數(shù)零點問題,屬于基礎題.16、【解析】因為點在平面上的射影為點,在平面上的射影為點,所以由兩點間距離公式可得,故答案為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)根據(jù)題意,分離參數(shù)且利用對數(shù)型復合函數(shù)的單調性求得的值域,即可求得參數(shù)的取值范圍;(2)根據(jù)是偶函數(shù)求得參數(shù),再根據(jù)題意,求解指數(shù)方程即可求得的取值范圍.【小問1詳解】由題意知函數(shù)存零點,即有解.又,易知在上是減函數(shù),又,,即,所以,所以的取值范圍是.【小問2詳解】的定義域為,若是偶函數(shù),則,即解得.此時,,所以即為偶函數(shù).又因為函數(shù)與的圖象有且只有一個公共點,故方程只有一解,即方程有且只有一個實根令,則方程有且只有一個正根①當時,,不合題意,②當時,方程有兩相等正根,則,且,解得,滿足題意;③若一個正根和一個負根,則,即時,滿足題意,綜上所述:實數(shù)的取值范圍為或.【點睛】本題考察利用函數(shù)奇偶性求參數(shù)值,以及對數(shù)方程的求解,對數(shù)型復合函數(shù)值域的求解,解決問題的關鍵是熟練的掌握對數(shù)函數(shù)的性質,屬綜合困難題.18、(1)見解析;(2)【解析】(1)根據(jù)函數(shù)的表達式,作出函數(shù)的圖象即可;(2)問題轉化為求函數(shù)的交點問題,結合函數(shù)的圖象,由數(shù)形結合得出即可【詳解】解:(1)畫出函數(shù)的圖象,如圖示:,由圖象得:在,單調遞增;(2)若函數(shù)有兩個零點,則和有2個交點,結合圖象得:【點睛】本題考查了指數(shù)函數(shù)、對數(shù)函數(shù)的圖象及性質,考查函數(shù)的零點問題,是一道基礎題19、(1);(2);(3).【解析】(1)利用兩向量平行有可得到一個關于的方程,利用三角函數(shù)恒等變化化簡進而求得x的值.(2)利用兩向量垂直有可得到一個關于的方程,利用三角函數(shù)恒等變化化簡進而求得x的值.(3)根據(jù)化出一個關于的方程,再利用恒等變化公式將函數(shù)轉化成,從而找到最小值所取得的x的值.【詳解】解:(1)∵向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π]與共線,∴,∴tanx=-,∵x∈[0,π],∴x=(2)∵⊥,∴cosx-sinx=0,∴tanx=1,∵x∈[0,π],∴x=(3)f(x)=?=cosx-,∵x∈[0,π],∴x-∈[-,],∴x-=時,f(x)取得最小值-2,∴當f(x)取得最小值時,x=【點睛】向量間的位置關系:兩向量垂直,則,兩向量平行,則.20、(1),;(2)函數(shù)在其定義域上為減函數(shù);(3).【解析】(1)由與可建立有關、的方程組,可得解出與的解析式;(2)化簡函數(shù)解析式,根據(jù)函數(shù)的解析式可直接判斷函數(shù)的單調性;(3)將所求不等式變形為,根據(jù)函數(shù)的定義域、單調性可得出關于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【詳解】(1)由于函數(shù)為奇函數(shù),為偶函數(shù),,,即,所以,,解得,.由,可得,所以,,;(2)函數(shù)的定義域為,,所以,函數(shù)在其定義域上為減函數(shù);(3)由于函數(shù)為定義域上的奇函數(shù),且為減函數(shù),由,可得,由題意可得,解得.因此,實數(shù)的取值范圍是.【點睛】思路點睛:根據(jù)函數(shù)單調性求解函數(shù)不等式的思路如下:(1)先分析出函數(shù)在指定區(qū)間上的單調性;(2)根據(jù)函數(shù)單調性將函數(shù)值的關系轉變?yōu)樽宰兞恐?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年高校博士研究生教師職務聘任合同范本3篇
- 二零二五年度跨境電子商務代理銷售合同6篇
- 二零二五年空壓機行業(yè)市場推廣與銷售合同3篇
- 二零二五年度儲煤場煤炭儲備與智能物流服務合同3篇
- 2024版土地貸款反擔保合同范本3篇
- 二零二五年度特殊環(huán)境搬遷及環(huán)保措施合同3篇
- 二零二五版跨境擔保居間交易合同細則2篇
- 展會國際物流合同(2篇)
- 二零二五版代駕服務租賃合同范本(含車輛使用限制條款)2篇
- 二零二五版快遞駕駛員職業(yè)發(fā)展規(guī)劃與聘用合同3篇
- 人教版八年級上學期物理期末復習(壓軸60題40大考點)
- 企業(yè)環(huán)保知識培訓課件
- 2024年度管理評審報告
- 暨南大學《微觀經濟學》2023-2024學年第一學期期末試卷
- 醫(yī)藥銷售合規(guī)培訓
- DB51-T 5038-2018 四川省地面工程施工工藝標準
- 三年級數(shù)學(上)計算題專項練習附答案
- GB/T 12723-2024單位產品能源消耗限額編制通則
- 2024年廣東省深圳市中考英語試題含解析
- GB/T 16288-2024塑料制品的標志
- 麻風病防治知識課件
評論
0/150
提交評論