云南省大理州2025屆數(shù)學(xué)高二上期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
云南省大理州2025屆數(shù)學(xué)高二上期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
云南省大理州2025屆數(shù)學(xué)高二上期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
云南省大理州2025屆數(shù)學(xué)高二上期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
云南省大理州2025屆數(shù)學(xué)高二上期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

云南省大理州2025屆數(shù)學(xué)高二上期末達(dá)標(biāo)檢測模擬試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在四面體中,,,,,為線段的中點(diǎn),則等于()A B.C. D.2.設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線與軸的交點(diǎn)為,是上一點(diǎn),若,則()A. B.C. D.3.已知拋物線的焦點(diǎn)為,拋物線的焦點(diǎn)為,點(diǎn)在上,且,則直線的斜率為A. B.C. D.4.已知雙曲線,且三個(gè)數(shù)1,,9成等比數(shù)列,則下列結(jié)論正確的是()A.的焦距為 B.的漸近線方程為C.的離心率為 D.的虛軸長為5.若數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,則下列不等式一定成立的是()A. B.C. D.6.已知向量,,則向量等于()A.(3,1,-2) B.(3,-1,2)C.(3,-1,-2) D.(-3,-1,-2)7.已知向量,.若,則()A. B.C. D.8.如圖所示的程序框圖,閱讀下面的程序框圖,則輸出的S=()A.14 B.20C.30 D.559.命題“,”否定形式是()A., B.,C., D.,10.已知過點(diǎn)的直線與圓相切,且與直線垂直,則()A. B.C. D.11.在△ABC中,角A,B,C所對的邊分別是a,b,c,若c=1,B=45°,cosA=,則b等于()A. B.C. D.12.已知實(shí)數(shù)成等比數(shù)列,則圓錐曲線的離心率為()A. B.2C.或2 D.或二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且a1=-1,an+1=SnSn+1,則Sn=__________.14.已知函數(shù)有三個(gè)零點(diǎn),則正實(shí)數(shù)a的取值范圍為_________15.已知,,且,則的值是_________.16.已知等差數(shù)列的公差為1,且是和的等比中項(xiàng),則前10項(xiàng)的和為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若,求的最大值;(2)若,求證:有且只有一個(gè)零點(diǎn).18.(12分)已知函數(shù),從下列兩個(gè)條件中選擇一個(gè)使得數(shù)列{an}成等比數(shù)列.條件1:數(shù)列{f(an)}是首項(xiàng)為4,公比為2的等比數(shù)列;條件2:數(shù)列{f(an)}是首項(xiàng)為4,公差為2的等差數(shù)列.(1)求數(shù)列{an}的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.19.(12分)已知橢圓過點(diǎn),且離心率為.(1)求橢圓的方程;(2)過作斜率分別為的兩條直線,分別交橢圓于點(diǎn),且,證明:直線過定點(diǎn).20.(12分)在平面直角坐標(biāo)系內(nèi),橢圓E:過點(diǎn),離心率為(1)求E的方程;(2)設(shè)直線(k∈R)與橢圓E交于A,B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使得對任意實(shí)數(shù)k,直線AM,BM的斜率乘積為定值?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由21.(12分)已知圓過點(diǎn),,且圓心在直線:上.(1)求圓的方程;(2)若從點(diǎn)發(fā)出的光線經(jīng)過軸反射,反射光線剛好經(jīng)過圓心,求反射光線的方程.22.(10分)已知,,其中(1)已知,若為真,求的取值范圍;(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)空間向量的線性運(yùn)算求解【詳解】由已知,故選:D2、D【解析】求出拋物線的準(zhǔn)線方程,可得出點(diǎn)的坐標(biāo),利用拋物線的定義可求得點(diǎn)的坐標(biāo),再利用兩點(diǎn)間的距離公式可求得結(jié)果.【詳解】易知拋物線焦點(diǎn)為,準(zhǔn)線方程為,可得準(zhǔn)線與軸的交點(diǎn),設(shè)點(diǎn),由拋物線的性質(zhì),,可得,所以,,解得,即點(diǎn),所以.故選:D.3、B【解析】根據(jù)拋物線的定義,求得p的值,即可得拋物線,的標(biāo)準(zhǔn)方程,求得拋物線的焦點(diǎn)坐標(biāo)后,再根據(jù)斜率公式求解.【詳解】因?yàn)椋?,解得,所以直線的斜率為.故選B.【點(diǎn)睛】本題考查了拋物線的定義的應(yīng)用,考查了拋物線的簡單性質(zhì),涉及了直線的斜率公式;拋物線上的點(diǎn)到焦點(diǎn)的距離等于其到準(zhǔn)線的距離;解題過程中注意焦點(diǎn)的位置.4、D【解析】先求得的值,然后根據(jù)雙曲線的知識對選項(xiàng)進(jìn)行分析,從而確定正確答案.【詳解】方程表示雙曲線,則,成等比數(shù)列,則,所以雙曲線方程為,所以,故雙曲線的焦距為,A選項(xiàng)錯誤.漸近線方程為,B選項(xiàng)錯誤.離心率,C選項(xiàng)錯誤.虛軸長,D選項(xiàng)正確.故選:D5、D【解析】對選項(xiàng)A,令即可檢驗(yàn);對選項(xiàng)B,令即可檢驗(yàn);對選項(xiàng)C,令即可檢驗(yàn);對選項(xiàng)D,設(shè)出等差數(shù)列的首項(xiàng)和公比,然后作差即可.【詳解】若,則可得:,故選項(xiàng)A錯誤;若,則可得:,故選項(xiàng)B錯誤;若,則可得:,故選項(xiàng)C錯誤;不妨設(shè)的首項(xiàng)為,公差為,則有:則有:,故選項(xiàng)D正確故選:D6、B【解析】根據(jù)空間向量線性運(yùn)算的坐標(biāo)表示即可得出答案.【詳解】解:因?yàn)椋?,所?故選:B.7、A【解析】根據(jù)給定條件利用空間向量平行的坐標(biāo)表示直接計(jì)算作答.【詳解】向量,,因,則,解得,所以,B,D都不正確;,C不正確,A正確.故選:A8、C【解析】經(jīng)分析為直到型循環(huán)結(jié)構(gòu),按照循環(huán)結(jié)構(gòu)進(jìn)行執(zhí)行,當(dāng)滿足跳出的條件時(shí)即可輸出值【詳解】解:第一次循環(huán)S=1,i=2;第二次循環(huán)S=1+22=5,i=3;第三次循環(huán)S=5+32=14,i=4;第四次循環(huán)S=14+42=30,i=5;此時(shí)5>4,跳出循環(huán),故輸出的值為30故選:C.9、C【解析】利用含有一個(gè)量詞的命題的否定的定義求解.【詳解】因?yàn)槊}“,是特稱命題,所以其否定是全稱命題,即為,故選:C10、B【解析】首先由點(diǎn)的坐標(biāo)滿足圓的方程來確定點(diǎn)在圓上,然后求出過點(diǎn)的圓的切線方程,最后由兩直線的垂直關(guān)系轉(zhuǎn)化為斜率關(guān)系求解.【詳解】由題知,圓的圓心,半徑.因?yàn)?,所以點(diǎn)在圓上,所以過點(diǎn)的圓的切線與直線垂直,設(shè)切線的斜率,則有,即,解得.因?yàn)橹本€與切線垂直,所以,解得.故選:B.11、C【解析】先由cosA的值求出,進(jìn)而求出,用正弦定理求出b的值.【詳解】因?yàn)閏osA=,所以,所以由正弦定理:,得:.故選:C12、C【解析】根據(jù)成等比數(shù)列求得,再根據(jù)離心率計(jì)算公式即可求得結(jié)果.【詳解】因?yàn)閷?shí)數(shù)成等比數(shù)列,故可得,解得或;當(dāng)時(shí),表示焦點(diǎn)在軸上的橢圓,此時(shí);當(dāng)時(shí),表示焦點(diǎn)在軸上的雙曲線,此時(shí).故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、-.【解析】因?yàn)椋?,所以,即,又,即,所以?shù)列是首項(xiàng)和公差都為的等差數(shù)列,所以,所以考點(diǎn):數(shù)列的遞推關(guān)系式及等差數(shù)列的通項(xiàng)公式【方法點(diǎn)晴】本題主要考查了數(shù)列的通項(xiàng)公式、數(shù)列的遞推關(guān)系式的應(yīng)用、等差數(shù)列的通項(xiàng)公式及其性質(zhì)定知識點(diǎn)的綜合應(yīng)用,解答中得到,,確定數(shù)列是首項(xiàng)和公差都為的等差數(shù)列是解答的關(guān)鍵,著重考查了學(xué)生靈活變形能力和推理與論證能力,平時(shí)應(yīng)注意方法的積累與總結(jié),屬于中檔試題14、【解析】求導(dǎo)易得函數(shù)有兩個(gè)極值點(diǎn)和,根據(jù)題意,由求解.【詳解】由,可得函數(shù)有兩個(gè)極值點(diǎn)和,,,若函數(shù)有三個(gè)零點(diǎn),必有解得或故答案為:15、【解析】根據(jù)空間向量可得,結(jié)合計(jì)算即可.【詳解】由題意知,,所以,解得.故答案:316、【解析】利用等比中項(xiàng)及等差數(shù)列通項(xiàng)公式求出首項(xiàng),再利用等差數(shù)列的前項(xiàng)和公式求出前10項(xiàng)的和.【詳解】設(shè)等差數(shù)列的首項(xiàng)為,由已知條件得,即,,解得,則.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)利用導(dǎo)數(shù)判斷原函數(shù)單調(diào)性,從而可求最值.(2)求導(dǎo)后發(fā)現(xiàn)導(dǎo)數(shù)中無參數(shù),故單調(diào)性與(1)中所求一致,然后利用零點(diǎn)存在定理結(jié)合的范圍,以及函數(shù)單調(diào)性證明在定義域內(nèi)有且只有一個(gè)零點(diǎn).【小問1詳解】若,則,其定義域?yàn)?,∴,由,得,∴?dāng)時(shí),;當(dāng)時(shí),,∴在上單調(diào)遞增,在上單調(diào)遞減,∴【小問2詳解】證明:,由(Ⅰ)知在上單調(diào)遞增,在上單調(diào)遞誠,∵,∴當(dāng)時(shí),,故在上無零點(diǎn);當(dāng)時(shí),,∵且,∴在上有且只有一個(gè)零點(diǎn).綜上,有且只有一個(gè)零點(diǎn).18、(1)(2)【解析】(1)根據(jù)所給的條件分別計(jì)算后即可判斷,再通過滿足題意的求出通項(xiàng);(2)由(1)可得,再通過錯位相減法求和即可.【小問1詳解】若選擇條件1,則有,可得,不滿足題意;若選擇條件2,則有,可得,滿足題意,故.【小問2詳解】由(1)可得,所以………①因此有……….②①②可得,即,化簡得.19、(1);(2)證明見解析.【解析】(1)由離心率、過點(diǎn)和橢圓關(guān)系可構(gòu)造方程求得,由此可得橢圓方程;(2)當(dāng)直線斜率不存在時(shí),表示出兩點(diǎn)坐標(biāo),由兩點(diǎn)連線斜率公式表示出,整理可得直線為;當(dāng)直線斜率存在時(shí),設(shè),與橢圓方程聯(lián)立可得韋達(dá)定理的形式,代入中整理可得,由此可得直線所過定點(diǎn);綜合兩種情況可得直線過定點(diǎn).【詳解】(1)橢圓過點(diǎn),即,;,又,,橢圓的方程為:.(2)當(dāng)直線斜率不存在時(shí),設(shè)直線方程為,則,則,,解得:,直線方程為;當(dāng)直線斜率存在時(shí),設(shè)直線方程為,聯(lián)立方程組得:,設(shè),則,(*),則,將*式代入化簡可得:,即,整理得:,代入直線方程得:,即,聯(lián)立方程組,解得:,,直線恒過定點(diǎn);綜上所述:直線恒過定點(diǎn).【點(diǎn)睛】思路點(diǎn)睛:本題考查直線與橢圓綜合應(yīng)用中的直線過定點(diǎn)問題的求解,求解此類問題的基本思路如下:①假設(shè)直線方程,與橢圓方程聯(lián)立,整理為關(guān)于或的一元二次方程的形式;②利用求得變量的取值范圍,得到韋達(dá)定理的形式;③利用韋達(dá)定理表示出已知中的等量關(guān)系,代入韋達(dá)定理可整理得到變量間的關(guān)系,從而化簡直線方程;④根據(jù)直線過定點(diǎn)的求解方法可求得結(jié)果.20、(1)(2)存在,或者【解析】(1)由離心率和橢圓經(jīng)過的點(diǎn)列出方程組,求出,得到橢圓方程;(2)假設(shè)存在,設(shè)出直線,聯(lián)立橢圓,利用韋達(dá)定理得到兩根之和,兩根之積,結(jié)合斜率乘積為定值得到關(guān)于的方程,求出答案.【小問1詳解】由題可得,,①由,得,即,則,②將②代入①,解得,,故E的方程為【小問2詳解】設(shè)存在點(diǎn)滿足條件記,由消去y,得.顯然,判別式>0,所以,,于是===上式為定值,當(dāng)且僅當(dāng),解得或此時(shí),或所以,存在定點(diǎn)或者滿足條件21、(1);(2)【解析】(1)根據(jù)題意設(shè)圓心,利用兩點(diǎn)坐標(biāo)公式求距離公式表示出,解出,確定圓心坐標(biāo)和半徑,進(jìn)而得出圓的標(biāo)準(zhǔn)方程;(2)根據(jù)點(diǎn)關(guān)于坐標(biāo)軸對稱的點(diǎn)的特征可得,利用直線的兩點(diǎn)式方程即可得出結(jié)果.【小問1詳解】圓過點(diǎn),,因?yàn)閳A心在直線::上,設(shè)圓心,又圓過點(diǎn),,所以,即,解得,所以,所以故圓的方程為:;【小問2詳解】點(diǎn)關(guān)于軸的對稱點(diǎn),則反射光線必經(jīng)過點(diǎn)和點(diǎn),由直線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論