河北省望都中學2025屆高二上數學期末質量檢測試題含解析_第1頁
河北省望都中學2025屆高二上數學期末質量檢測試題含解析_第2頁
河北省望都中學2025屆高二上數學期末質量檢測試題含解析_第3頁
河北省望都中學2025屆高二上數學期末質量檢測試題含解析_第4頁
河北省望都中學2025屆高二上數學期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省望都中學2025屆高二上數學期末質量檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓C:的一個焦點為(0,-2),則k的值為()A.5 B.3C.9 D.252.圓與圓的位置關系為()A.內切 B.相交C.外切 D.相離3.若函數單調遞增,則實數a的取值范圍為()A. B.C. D.4.雙曲線C:的漸近線方程為()A. B.C. D.5.如果,那么下列不等式成立的是()A. B.C. D.6.過拋物線()的焦點作斜率大于的直線交拋物線于,兩點(在的上方),且與準線交于點,若,則A. B.C. D.7.已知,,,則點C到直線AB的距離為()A.3 B.C. D.8.已知橢圓的上下頂點分別為,一束光線從橢圓左焦點射出,經過反射后與橢圓交于點,則直線的斜率為()A. B.C. D.9.將函數圖象上所有點的橫坐標伸長到原來的2倍,縱坐標不變,再將所得圖象向右平移個單位長度,得到函數的圖象,則()A. B.C. D.10.已知為橢圓的兩個焦點,過的直線交橢圓于兩點,若,則()A. B.C. D.11.若拋物線y2=4x上一點P到x軸的距離為2,則點P到拋物線的焦點F的距離為()A.4 B.5C.6 D.712.已知直線和圓,則“”是“直線與圓相切”的().A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的右頂點為,為上一點,則的最大值為______.14.如圖三角形數陣:132456109871112131415……按照自上而下,自左而右的順序,位于第行的第列,則______.15.已知是雙曲線的左焦點,圓與雙曲線在第一象限的交點,若的中點在雙曲線的漸近線上,則此雙曲線的離心率是___________.16.四棱錐A-BCDE中,底面BCDE為矩形,側面ABC⊥底面BCDE,側面ABE⊥底面BCDE,BC=2,CD=4(I)證明:AB⊥面BCDE;(II)若AD=2,求二面角C-AD-E的正弦值三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設命題方程表示中心在原點,焦點在坐標軸上的雙曲線;命題,,若“”為假命題,“”為真命題,求實數的取值范圍.18.(12分)已知函數.(1)設x=2是函數f(x)的極值點,求a,并求f(x)的單調區(qū)間;(2)證明:當時,.19.(12分)某城鎮(zhèn)為推進生態(tài)城鎮(zhèn)建設,對城鎮(zhèn)的生態(tài)環(huán)境、市容市貌等方面進行了全面治理,為了解城鎮(zhèn)居民對治理情況的評價和建議,現隨機抽取了200名居民進行問卷并評分(滿分100分),將評分結果制成如下頻率分布直方圖,已知圖中a,b,c成等比數列,且公比為2(1)求圖中a,b,c的值,并估計評分的均值(各段分數用該段中點值作代表);(2)根據統計數據,在評分為“50~60”和“80~90”的居民中用分層抽樣的方法抽取了6個居民.若從這6個居民中隨機選擇2個參加座談,求所抽取的2個居民中至少有1個評分在“80~90”的概率20.(12分)如圖,在四棱錐中,底面是矩形,平面于點M連接.(1)求證:平面;(2)求平面與平面所成角的余弦值.21.(12分)p:函數在區(qū)間是遞增的;q:方程有實數解.(1)若p為真命題,求m的取值范圍;(2)若“”為真,“”為假,求m的取值范圍.22.(10分)如圖,在三棱錐中,平面,,,為的中點.(1)證明:平面;(2)求平面與平面所成二面角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題意可得焦點在軸上,由,可得k的值.【詳解】∵橢圓的一個焦點是,∴,∴,故選:A2、C【解析】寫出兩圓的圓心和半徑,求出圓心距,發(fā)現與兩圓的半徑和相等,所以判斷兩圓外切【詳解】圓的標準方程為:,所以圓心坐標為,半徑;圓的圓心為,半徑,圓心距,所以兩圓相外切故選:C3、D【解析】根據函數的單調性,可知其導數在R上恒成立,分離參數,即可求得答案.【詳解】由題意可知單調遞增,則在R上恒成立,可得恒成立,當時,取最小值-1,故,故選:D4、D【解析】根據給定的雙曲線方程直接求出其漸近線方程作答.【詳解】雙曲線C:的實半軸長,虛半軸長,即有,而雙曲線C的焦點在y軸上,所以雙曲線C的漸近線的方程為,即.故選:D5、D【解析】利用不等式的性質分析判斷每個選項.【詳解】由不等式的性質可知,因為,所以,,故A錯誤,D正確;由,可得,,故B,C錯誤.故選:D6、A【解析】分別過作準線的垂線,垂足分別為,設,則,,故選A.7、D【解析】應用空間向量的坐標運算求在上投影長及的模長,再應用勾股定理求點C到直線AB的距離.【詳解】因為,,所以設點C到直線AB的距離為d,則故選:D8、B【解析】根據給定條件借助橢圓的光學性質求出直線AD的方程,進而求出點D的坐標計算作答.【詳解】依題意,橢圓的上頂點,下頂點,左焦點,右焦點,由橢圓的光學性質知,反射光線AD必過右焦點,于是得直線AD的方程為:,由得點,則有,所以直線的斜率為.故選:B9、A【解析】根據三角函數圖象的變換,由逆向變換即可求解.【詳解】由已知的函數逆向變換,第一步,向左平移個單位長度,得到的圖象;第二步,圖象上所有點的橫坐標縮短到原來的,縱坐標不變,得到的圖象,即的圖象.故.故選:A10、C【解析】根據橢圓的定義可得,由即可求解.【詳解】由,可得根據橢圓的定義,所以.故選:C11、A【解析】根據拋物線y2=4x上一點P到x軸的距離為2,得到點P(3,±2),然后利用拋物線的定義求解.【詳解】由題意,知拋物線y2=4x的準線方程為x=-1,∵拋物線y2=4x上一點P到x軸的距離為2,則P(3,±2),∴點P到拋物線的準線的距離為3+1=4,∴點P到拋物線的焦點F的距離為4.故選:A.12、B【解析】首先求出直線與圓相切時的取值,再根據充分必要條件的定義判斷.【詳解】若直線與圓相切,則圓心到直線的距離,則,解得,所以“”是“直線與圓相切”的充分不必要條件.故選:B【點睛】本題考查直線與圓的位置關系,充分必要條件,重點考查計算,理解能力,屬于基礎題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設出點P的坐標,利用兩點間距離公式建立函數關系,借助二次函數計算最值作答.【詳解】橢圓的右頂點為,設點,則,即,且,于是得,因,則當時,,所以的最大值為.故答案為:14、【解析】由題意可知到第行結束一共有個數字,由此可知在第行;又由圖可知,奇數行從左到右是從小到大排列,偶數行從左到右是從大到小排列,第行個數字從大到小排列,由此可知在到數第列,據此即可求出,進而求出結果.【詳解】由圖可知,第1行有1個數字,第2行有2個數字,第2行有3個數字,……第行有個數字,由此規(guī)律可知,到第行結束一共有個數字;又當時,,所以第行結束一共有個數字;當時,,所以在第行,故;由圖可知,奇數行從左到右是從小到大排列,偶數行從左到右是從大到小排列,第行是偶數行,共個數字,從大到小排列,所以在倒數第列,所以,所以.故答案為:.15、【解析】計算點漸近線的距離,從而得,由勾股定理計算,由雙曲線定義列式,從而計算得,即可計算出離心率.【詳解】設雙曲線右焦點為,因為的中點在雙曲線的漸近線上,由可知,,因為為中點,所以,所以,即垂直平分線段,所以到漸近線的距離為,可得,所以,由雙曲線定義可知,,即,所以,所以.故答案為:【點睛】雙曲線的離心率是橢圓最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,結合轉化為的齊次式,然后等式(不等式)兩邊分別除以或轉化為關于的方程(不等式),解方程(不等式)即可得(的取值范圍)16、(Ⅰ)詳見解析;(Ⅱ).【解析】(Ⅰ)推導出BE⊥BC,從而BE⊥平面ABC,進而BE⊥AB,由面ABE⊥面BCDE,得AB⊥BC,由此能證明AB⊥面BCDE(Ⅱ)以B為原點,所在直線分別為x,y,z軸,建立空間直角坐標系,利用向量法能求出二面角C﹣AD﹣E的正弦值【詳解】由側面底面,且交線為,底面為矩形所以平面,又平面,所以由面面,同理可證,又面在底面中,,由面,故,以為原點,所在直線分別為軸建立空間直角坐標系,則,設平面的法向量,則,取所以平面的法向量,同理可求得平面的法向量.設二面角的平面角為,則故所求二面角的正弦值為.【點睛】本題考查線面垂直的證明,考查二面角的正弦值的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,考查函數與方程思想,是中檔題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】求出當命題、分別為真命題時實數的取值范圍,分析可知、中一真一假,分真假、假真兩種情況討論,求出對應的實數的取值范圍,綜合可得結果.【詳解】解:若為真命題,則,即,解得,若為真命題,則,解得,因為“”為假命題,“”為真命題,則、中一真一假,若真假,則,可得,若假真,則,此時.綜上所述,實數的范圍為.18、(1),的單調遞減區(qū)間為,單調遞增區(qū)間為;(2)證明見解析;【解析】(1)求出函數的定義域與導函數,依題意可得,即可求出參數的值,再根據導函數與函數的單調性的關系求出函數的單調區(qū)間;(2)依題意可得,令,即證,,又,所以即證,令,利用導數說明其單調性,即可得解;【詳解】解:(1)因為,定義域為,所以,因為是函數的極值點,所以,所以,解得,所以,令,則,所以在上單調遞增,又,所以當時,,即,所以在上單調遞減,當時,,即,所以上單調遞增,綜上可得的單調遞減區(qū)間為,單調遞增區(qū)間為;(2)證明:依題意即證,即證,令,則,所以即證,因為,所以即證,令,則,所以當時,,當時,所以,所以,所以當時,19、(1),,,均值為65.6(2)【解析】(1)根據a,b,c成等比數列且公比為2,得到a,b,c的關系,利用頻率之和為1,求出a,b,c,估計評分的均值;(2)利用列舉法得到基本事件,求出相應的概率.【小問1詳解】由題意得,,,有,所以,即,解得,于是,評分在40~50,50~60,60~70,70~80,80~90,90~100的概率分別為0.15,0.20,0.30,0.20,0.10,0.05,則均分估計值為【小問2詳解】評分在“50~60”和“80~90”分別有40人和20人則所抽取的6個居民中,評分在“80~90”一組有2人,記為A1,A2,評分在“50~60”一組4人,記為B1,B2,B3,B4從這6人中選取2人的所有基本事件有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4),共15個其中至少有1個評分在“80~90”的基本事件有9個則所求的概率,即抽取的2個居民中至少有1個評分在“80~90”的概率為20、(1)證明見詳解(2)【解析】(1)連接,交于點,則為中點,再由等腰三角形三線合一可知為中點,連接,利用中位線可知,根據直線與平面平行的判定定理即可證明;(2)根據題意建立空間直角坐標系,求出兩個平面的法向量,利用向量法即可求出兩平面所成角的余弦值.【小問1詳解】連接,交于點,則為中點,因為,于,則為中點,連接,則,又因為平面,平面,所以平面;【小問2詳解】如圖所示,以點為坐標原點,建立空間直角坐標系,則,,設平面的一個法向量為,由可得,令,得,即,易知平面的一個法向量為,設平面與平面所成角為,,則平面與平面所成角的余弦值為.21、(1)(2)或【解析】(1)依題意在區(qū)間上恒成立,參變分離可得在區(qū)間上恒成立,再利用基本不等式計算可得;(2)首先求出命題為真時參數的取值范圍,再根據“”為真,“”為假,即可得到真假,或假真,從而得到不等式組,解得即可;【小問1詳解】解:為真命題,即函數在區(qū)間上是遞增的∴在區(qū)間上恒成立,∴在區(qū)間上恒成立,∵,當且僅當時等號成立,∴的取值范圍為.【小問2詳解】解:為真命題,即方程有實數解∴即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論