2025屆海南省三亞市達(dá)標(biāo)名校高二上數(shù)學(xué)期末考試模擬試題含解析_第1頁(yè)
2025屆海南省三亞市達(dá)標(biāo)名校高二上數(shù)學(xué)期末考試模擬試題含解析_第2頁(yè)
2025屆海南省三亞市達(dá)標(biāo)名校高二上數(shù)學(xué)期末考試模擬試題含解析_第3頁(yè)
2025屆海南省三亞市達(dá)標(biāo)名校高二上數(shù)學(xué)期末考試模擬試題含解析_第4頁(yè)
2025屆海南省三亞市達(dá)標(biāo)名校高二上數(shù)學(xué)期末考試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆海南省三亞市達(dá)標(biāo)名校高二上數(shù)學(xué)期末考試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)的圖象在點(diǎn)處的切線與直線垂直,則()A. B.C. D.2.已知兩條平行直線:與:間的距離為3,則()A.25或-5 B.25C.5 D.21或-93.若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為A. B.C. D.4.若拋物線的焦點(diǎn)與橢圓的左焦點(diǎn)重合,則m的值為()A.4 B.-4C.2 D.-25.若拋物線與直線:相交于兩點(diǎn),則弦的長(zhǎng)為()A.6 B.8C. D.6.雙曲線與橢圓的焦點(diǎn)相同,則等于()A.1 B.C.1或 D.27.已知空間向量,,則()A. B.C. D.8.已知空間向量,,則()A. B.19C.17 D.9.已知實(shí)數(shù),滿足不等式組,則的最小值為()A2 B.3C.4 D.510.中國(guó)景德鎮(zhèn)陶瓷世界聞名,其中青花瓷最受大家的喜愛,如圖1這個(gè)精美的青花瓷花瓶,它的頸部(圖2)外形上下對(duì)稱,基本可看作是離心率為的雙曲線的一部分繞其虛軸所在直線旋轉(zhuǎn)所形成的曲面,若該頸部中最細(xì)處直徑為16厘米,瓶口直徑為20厘米,則頸部高為()A.10 B.20C.30 D.4011.設(shè)等比數(shù)列,有下列四個(gè)命題:①{a②是等比數(shù)列;③是等比數(shù)列;④lgan其中正確命題的個(gè)數(shù)是()A.1 B.2C.3 D.412.當(dāng)實(shí)數(shù),m變化時(shí),的最大值是()A.3 B.4C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.《九章算術(shù)》是人類科學(xué)史上應(yīng)用數(shù)學(xué)的最早巔峰,書中有這樣一道題:“今有大夫、不更,簪裹、上造、公士,凡五人,共獵得五只鹿,欲以爵次分之,問(wèn)各得幾何?”其譯文是“現(xiàn)在有從高到低依次為大夫,不更,簪裹,上造、公士的五個(gè)不同爵次的官員,共獵得五只鹿,要按爵次商低分(即根據(jù)爵次高低分配得到的獵物數(shù)依次成等差數(shù)列),向各得多少鹿?”已知上造分得只鹿,則不更所得的鹿數(shù)為_______只14.已知斜率為的直線與橢圓相交于不同的兩點(diǎn)A,B,M為y軸上一點(diǎn)且滿足|MA|=|MB|,則點(diǎn)M的縱坐標(biāo)的取值范圍是___________.15.設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)為雙曲線的焦點(diǎn),過(guò)F的直線l與C的兩條漸近線分別交于A,B兩點(diǎn).若,且的內(nèi)切圓的半徑為,則C的離心率為____________16.已知正方體的棱長(zhǎng)為為的中點(diǎn),為面內(nèi)一點(diǎn).若點(diǎn)到面的距離與到直線的距離相等,則三棱錐體積的最小值為__________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知圓的方程為:.(1)求的值,使圓的周長(zhǎng)最??;(2)過(guò)作直線,使與滿足(1)中條件的圓相切,求的方程,并求切線段的長(zhǎng).18.(12分)已知平面內(nèi)兩點(diǎn).(1)求過(guò)點(diǎn)且與直線平行的直線的方程;(2)求線段的垂直平分線方程.19.(12分)已知直線,半徑為的圓與相切,圓心在軸上且在直線的右上方.(1)求圓的方程;(2)過(guò)點(diǎn)的直線與圓交于兩點(diǎn)在軸上方),問(wèn)在軸正半軸上是否存在定點(diǎn),使得軸平分?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.20.(12分)如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).(1)證明:PB∥平面AEC(2)設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積21.(12分)設(shè)數(shù)列的首項(xiàng),(1)證明:數(shù)列是等比數(shù)列;(2)設(shè)且前項(xiàng)和為,求22.(10分)如圖,在四棱錐中,底面為正方形,底面,,為棱的中點(diǎn).(1)求直線與所成角的余弦值;(2)求直線與平面所成角的正弦值;(3)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】對(duì)函數(shù)求導(dǎo),利用導(dǎo)數(shù)的幾何意義結(jié)合垂直關(guān)系計(jì)算作答.【詳解】函數(shù)定義域?yàn)?,求?dǎo)得,于是得函數(shù)的圖象在點(diǎn)處切線的斜率,而直線的斜率為,依題意,,即,解得,所以.故選:C2、A【解析】根據(jù)平行直線的性質(zhì),結(jié)合平行線間距離公式進(jìn)行求解即可.【詳解】因?yàn)橹本€:與:平行,所以有,因?yàn)閮蓷l平行直線:與:間距離為3,所以,或,當(dāng)時(shí),;當(dāng)時(shí),,故選:A3、D【解析】解:橢圓的右焦點(diǎn)為(2,0),所以拋物線的焦點(diǎn)為(2,0),則,故選D4、B【解析】根據(jù)拋物線和橢圓焦點(diǎn)與其各自標(biāo)準(zhǔn)方程的關(guān)系即可求解.【詳解】由題可知拋物線焦點(diǎn)為,橢圓左焦點(diǎn)為,∴.故選:B.5、B【解析】由題得拋物線的焦點(diǎn)坐標(biāo)為剛好在直線上,再聯(lián)立直線和拋物線的方程,利用韋達(dá)定理和拋物線的定義求解.【詳解】解:由題得.由題得拋物線的焦點(diǎn)坐標(biāo)為剛好在直線上,設(shè),聯(lián)立直線和拋物線方程得,所以.所以.故選:B6、A【解析】根據(jù)雙曲線方程形式確定焦點(diǎn)位置,再根據(jù)半焦距關(guān)系列式求參數(shù).【詳解】因?yàn)殡p曲線的焦點(diǎn)在軸上,所以橢圓焦點(diǎn)在軸上,依題意得解得.故選:A7、C【解析】直接利用向量的坐標(biāo)運(yùn)算法則求解即可【詳解】因?yàn)?,,所以,故選:C8、D【解析】先求出的坐標(biāo),再求出其?!驹斀狻恳?yàn)?,,所以,故,故選:D.9、B【解析】畫出可行域,找到最優(yōu)解,得最值.【詳解】畫出不等式組對(duì)應(yīng)的可行域如下:平行移動(dòng)直線,當(dāng)直線過(guò)點(diǎn)時(shí),.故選:B.10、B【解析】設(shè)雙曲線方程為,根據(jù)已知條件可得的值,由可得雙曲線的方程,再將代入方程可得的值,即可求解.【詳解】因?yàn)殡p曲線焦點(diǎn)在軸上,設(shè)雙曲線方程為由雙曲線的性質(zhì)可知:該頸部中最細(xì)處直徑為實(shí)軸長(zhǎng),所以,可得,因?yàn)殡x心率為,即,可得,所以,所以雙曲線的方程為:,因瓶口直徑為20厘米,根據(jù)對(duì)稱性可知頸部最右點(diǎn)橫坐標(biāo)為,將代入雙曲線可得,解得:,所以頸部高為,故選:B11、C【解析】根據(jù)等比數(shù)列的性質(zhì)對(duì)四個(gè)命題逐一分析,由此確定正確命題的個(gè)數(shù).【詳解】是等比數(shù)列可得(為定值)①為常數(shù),故①正確②,故②正確③為常數(shù),故③正確④不一定為常數(shù),故④錯(cuò)誤故選C.【點(diǎn)睛】本小題主要考查等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.12、D【解析】根據(jù)點(diǎn)到直線的距離公式可知可以表示單位圓上點(diǎn)到直線的距離,利用圓的性質(zhì)結(jié)合圖形即得.【詳解】由題可知,可以表示單位圓上點(diǎn)到直線的距離,設(shè),因直線,即表示恒過(guò)定點(diǎn),根據(jù)圓的性質(zhì)可得.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意分析,利用等差數(shù)列基本量代換列方程組即可求解.【詳解】記大夫,不更,簪裹,上造、公士得到的獵物數(shù)為等差數(shù)列,公差為d,由題意可得,即,解得,∴故答案為:14、【解析】設(shè)直線的方程為,由消去并化簡(jiǎn)得,設(shè),,,解得..由于,所以是垂直平分線與軸的交點(diǎn),垂直平分線方程為,令得,由于,所以.也即的縱坐標(biāo)的取值范圍是.故答案為:15、##【解析】,作出漸近線圖像,由題可知的內(nèi)切圓圓心在x軸上,過(guò)內(nèi)心作OA和AB的垂線,可得幾何關(guān)系,據(jù)此即可求解.【詳解】雙曲線漸近線OA與OB如圖所示,OA與OB關(guān)于x軸對(duì)稱,設(shè)△OAB的內(nèi)切圓圓心為,則M在的平分線上,過(guò)點(diǎn)分別作于點(diǎn)于,由,則四邊形為正方形,由焦點(diǎn)到漸近線的距離為得,又,∴,且,∴,∴,則.故答案為:.16、##【解析】由題意可知,點(diǎn)在平面內(nèi)的軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,如圖在底面建立平面直角坐標(biāo)系,求出拋物線方程,直線的方程,將直線向拋物線平移,恰好與拋物線相切時(shí),切點(diǎn)為點(diǎn),此時(shí)的面積最小,則三棱錐體積的最小【詳解】因?yàn)闉槊鎯?nèi)一點(diǎn),且點(diǎn)到面的距離與到直線的距離相等,所以點(diǎn)在平面內(nèi)的軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,如圖在底面,以所在的直線為軸,以的中垂線為軸建立平面直角坐標(biāo)系,則,設(shè)拋物線方程為,則,得,所以拋物線方程為,,直線的方程為,即,設(shè)與直線平行且與拋物線相切的直線方程為,由,得,由,得,所以與拋物線相切的直線為,此時(shí)切點(diǎn)為,且的面積最小,因?yàn)辄c(diǎn)到直線的距離為,所以的面積的最小值為,所以三棱錐體積的最小值為,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)直線方程為或,切線段長(zhǎng)度為4【解析】(1)先求圓的標(biāo)準(zhǔn)方程,由半徑最小則周長(zhǎng)最小;(2)由,則圓的方程為:,直線和圓相切則圓心到直線的距離等于半徑,分直線與軸垂直和直線與軸不垂直兩種情況進(jìn)行討論即可得解.進(jìn)一步,利用圓的幾何性質(zhì)可求解切線的長(zhǎng)度.【小問(wèn)1詳解】,配方得:,當(dāng)時(shí),圓的半徑有最小值2,此時(shí)圓的周長(zhǎng)最小.【小問(wèn)2詳解】由(1)得,,圓的方程為:.當(dāng)直線與軸垂直時(shí),,此時(shí)直線與圓相切,符合條件;當(dāng)直線與軸不垂直時(shí),設(shè)為,由直線與圓相切得:,解得,所以切線方程為,即.綜上,直線方程為或.圓心與點(diǎn)的距離,則切線長(zhǎng)度為.18、(1)(2)【解析】(1)求出直線的斜率,利用點(diǎn)斜式方程求解即可;(2)求出線段的中點(diǎn)坐標(biāo),求出斜率然后求解垂直平分線方程.試題解析:(1)∵點(diǎn)∴∴由點(diǎn)斜式得直線的方程(2)∵點(diǎn)∴線段的中點(diǎn)坐標(biāo)為∵∴線段的垂直平分線的斜率為∴由點(diǎn)斜式得線段的垂直平分線的方程為19、(1);(2)存在,.【解析】(1)設(shè)出圓心,根據(jù)圓心到直線距離等于半徑列方程求出的值可得圓心坐標(biāo),進(jìn)而可得圓的方程;(2)由題可設(shè)直線的方程為,與圓的方程聯(lián)立,利用韋達(dá)定理及可得,即得.【小問(wèn)1詳解】由已知可設(shè)圓心,則,解得或(舍).所以圓.【小問(wèn)2詳解】由題可設(shè)直線的方程為,由,得到:顯然成立,所以.①若軸平分,則,所以:,整理得:,將①代入整理得對(duì)任意的恒成立,則.∴存在點(diǎn)為時(shí),使得軸平分.20、【解析】(Ⅰ)連接BD交AC于O點(diǎn),連接EO,只要證明EO∥PB,即可證明PB∥平面AEC;(Ⅱ)延長(zhǎng)AE至M連結(jié)DM,使得AM⊥DM,說(shuō)明∠CMD=60°,是二面角的平面角,求出CD,即可三棱錐E-ACD的體積試題解析:(1)證明:連接BD交AC于點(diǎn)O,連接EO.因?yàn)锳BCD為矩形,所以O(shè)為BD中點(diǎn)又E為PD的中點(diǎn),所以EO∥PB.因?yàn)镋O?平面AEC,PB?平面AEC,所以PB∥平面AEC.(2)因?yàn)镻A⊥平面ABCD,ABCD為矩形,所以AB,AD,AP兩兩垂直如圖,以A為坐標(biāo)原點(diǎn),,AD,AP的方向?yàn)閤軸y軸z軸的正方向,||為單位長(zhǎng),建立空間直角坐標(biāo)系A(chǔ)-xyz,則D,E,=.設(shè)B(m,0,0)(m>0),則C(m,,0),=(m,,0)設(shè)n1=(x,y,z)為平面ACE的法向量,則即可取n1=.又n2=(1,0,0)為平面DAE的法向量,由題設(shè)易知|cos〈n1,n2〉|=,即=,解得m=.因?yàn)镋為PD的中點(diǎn),所以三棱錐E-ACD的高為.三棱錐E-ACD的體積V=××××=.考點(diǎn):二面角的平面角及求法;棱柱、棱錐、棱臺(tái)的體積;直線與平面平行的判定21、(1)證明見解析;(2).【解析】(1)由已知變形得出,即可證得結(jié)論成立;(2)計(jì)算,利用并項(xiàng)求和法可求得.【小問(wèn)1詳解】證明:對(duì)任意的,,則,且,故數(shù)列為等比數(shù)列,且該數(shù)列的首項(xiàng)為,公比也為,故.【小問(wèn)2詳解】解:,所以,,因此,.22、(1);(2);(3).【解析】以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè).(1)寫出、的坐標(biāo),利用空間向量法計(jì)算出直線與所成角的余弦值;(2)求出平面的一個(gè)法向量的坐標(biāo),利用空間向量法可計(jì)算得出直線與平面所成角的正弦值;(3)求出平面的一個(gè)法向量的坐標(biāo),利用空間向量法可求得二面角的余弦值.【詳解】平面,四邊形為正方形,設(shè).以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,如下圖所示:則、、、、、.(1),,,所以,異面直線、所成角的余弦值為;(2)設(shè)平面

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論