浙江省湖州市南潯區(qū)重點名校2023-2024學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題含解析_第1頁
浙江省湖州市南潯區(qū)重點名校2023-2024學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題含解析_第2頁
浙江省湖州市南潯區(qū)重點名校2023-2024學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題含解析_第3頁
浙江省湖州市南潯區(qū)重點名校2023-2024學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題含解析_第4頁
浙江省湖州市南潯區(qū)重點名校2023-2024學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

浙江省湖州市南潯區(qū)重點名校2023-2024學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.太原市出租車的收費標(biāo)準(zhǔn)是:白天起步價8元(即行駛距離不超過3km都需付8元車費),超過3km以后,每增加1km,加收1.6元(不足1km按1km計),某人從甲地到乙地經(jīng)過的路程是xkm,出租車費為16元,那么x的最大值是()A.11 B.8 C.7 D.52.下列性質(zhì)中菱形不一定具有的性質(zhì)是()A.對角線互相平分 B.對角線互相垂直C.對角線相等 D.既是軸對稱圖形又是中心對稱圖形3.已知在四邊形ABCD中,AD//BC,對角線AC、BD交于點O,且AC=BD,下列四個命題中真命題是()A.若AB=CD,則四邊形ABCD一定是等腰梯形;B.若∠DBC=∠ACB,則四邊形ABCD一定是等腰梯形;C.若,則四邊形ABCD一定是矩形;D.若AC⊥BD且AO=OD,則四邊形ABCD一定是正方形.4.2cos30°的值等于()A.1 B. C. D.25.不等式組的解集在數(shù)軸上可表示為()A. B. C. D.6.如圖,把一塊含有45°角的直角三角板的兩個頂點放在直尺的對邊上.如果∠1=20°,那么∠2的度數(shù)是()A.30° B.25°C.20° D.15°7.如圖,直線a∥b,∠ABC的頂點B在直線a上,兩邊分別交b于A,C兩點,若∠ABC=90°,∠1=40°,則∠2的度數(shù)為()A.30° B.40° C.50° D.60°8.實數(shù)a在數(shù)軸上的位置如圖所示,則下列說法不正確的是()A.a(chǎn)的相反數(shù)大于2B.a(chǎn)的相反數(shù)是2C.|a|>2D.2a<09.如圖,已知垂直于的平分線于點,交于點,,若的面積為1,則的面積是()A. B. C. D.10.若正六邊形的邊長為6,則其外接圓半徑為()A.3 B.3 C.3 D.6二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,是由形狀相同的正六邊形和正三角形鑲嵌而成的一組有規(guī)律的圖案,則第n個圖案中陰影小三角形的個數(shù)是.12.如圖,以原點O為圓心的圓交X軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內(nèi)⊙O上的一點,若∠DAB=20°,則∠OCD=.13.如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,過點C作⊙O的切線交AB的延長線于點P,若∠P=40°,則∠ADC=____°.14.已知拋物線開口向上且經(jīng)過點,雙曲線經(jīng)過點,給出下列結(jié)論:;;,c是關(guān)于x的一元二次方程的兩個實數(shù)根;其中正確結(jié)論是______填寫序號15.如圖,在菱形ABCD中,對角線AC、BD相交于點O,點E是線段BO上的一個動點,點F為射線DC上一點,若∠ABC=60°,∠AEF=120°,AB=4,則EF可能的整數(shù)值是_____.16.如圖,已知在Rt△ABC中,∠ACB=90°,AB=4,分別以AC,BC為直徑作半圓,面積分別記為S1,S2,則S1+S2等_________.三、解答題(共8題,共72分)17.(8分)小張騎自行車勻速從甲地到乙地,在途中因故停留了一段時間后,仍按原速騎行,小李騎摩托車比小張晚出發(fā)一段時間,以800米/分的速度勻速從乙地到甲地,兩人距離乙地的路程y(米)與小張出發(fā)后的時間x(分)之間的函數(shù)圖象如圖所示.求小張騎自行車的速度;求小張停留后再出發(fā)時y與x之間的函數(shù)表達(dá)式;求小張與小李相遇時x的值.18.(8分)(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點M為BC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點M為BC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點M為BC邊上異于B、C的一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中點,連接CN,若BC=10,CN=,試求EF的長.19.(8分)如圖,菱形中,分別是邊的中點.求證:.20.(8分)某學(xué)校環(huán)保志愿者協(xié)會對該市城區(qū)的空氣質(zhì)量進(jìn)行調(diào)查,從全年365天中隨機(jī)抽取了80天的空氣質(zhì)量指數(shù)(AQI)數(shù)據(jù),繪制出三幅不完整的統(tǒng)計圖表,請根據(jù)圖表中提供的信息解答下列問題:AQI指數(shù)質(zhì)量等級天數(shù)(天)0-50優(yōu)m51-100良44101-150輕度污染n151-200中度污染4201-300重度污染2300以上嚴(yán)重污染2(1)統(tǒng)計表中m=,n=,扇形統(tǒng)計圖中,空氣質(zhì)量等級為“良”的天數(shù)占%;(2)補(bǔ)全條形統(tǒng)計圖,并通過計算估計該市城區(qū)全年空氣質(zhì)量等級為“優(yōu)”和“良”的天數(shù)共多少?21.(8分)已知拋物線y=ax2+bx+c.(Ⅰ)若拋物線的頂點為A(﹣2,﹣4),拋物線經(jīng)過點B(﹣4,0)①求該拋物線的解析式;②連接AB,把AB所在直線沿y軸向上平移,使它經(jīng)過原點O,得到直線l,點P是直線l上一動點.設(shè)以點A,B,O,P為頂點的四邊形的面積為S,點P的橫坐標(biāo)為x,當(dāng)4+6≤S≤6+8時,求x的取值范圍;(Ⅱ)若a>0,c>1,當(dāng)x=c時,y=0,當(dāng)0<x<c時,y>0,試比較ac與l的大小,并說明理由.22.(10分)從廣州去某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程是400千米,普通列車的行駛路程是高鐵的行駛路程的1.3倍.求普通列車的行駛路程;若高鐵的平均速度(千米/時)是普通列車平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.23.(12分)某商店老板準(zhǔn)備購買A、B兩種型號的足球共100只,已知A型號足球進(jìn)價每只40元,B型號足球進(jìn)價每只60元.(1)若該店老板共花費了5200元,那么A、B型號足球各進(jìn)了多少只;(2)若B型號足球數(shù)量不少于A型號足球數(shù)量的,那么進(jìn)多少只A型號足球,可以讓該老板所用的進(jìn)貨款最少?24.城市小區(qū)生活垃圾分為:餐廚垃圾、有害垃圾、可回收垃圾、其他垃圾四種不同的類型.(1)甲投放了一袋垃圾,恰好是餐廚垃圾的概率是;(2)甲、乙分別投放了一袋垃圾,求恰好是同一類型垃圾的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)等量關(guān)系,即(經(jīng)過的路程﹣3)×1.6+起步價2元≤1.列出不等式求解.【詳解】可設(shè)此人從甲地到乙地經(jīng)過的路程為xkm,根據(jù)題意可知:(x﹣3)×1.6+2≤1,解得:x≤2.即此人從甲地到乙地經(jīng)過的路程最多為2km.故選B.【點睛】考查了一元一次方程的應(yīng)用.關(guān)鍵是掌握正確理解題意,找出題目中的數(shù)量關(guān)系.2、C【解析】

根據(jù)菱形的性質(zhì):①菱形具有平行四邊形的一切性質(zhì);②菱形的四條邊都相等;③菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角;④菱形是軸對稱圖形,它有2條對稱軸,分別是兩條對角線所在直線.【詳解】解:A、菱形的對角線互相平分,此選項正確;B、菱形的對角線互相垂直,此選項正確;C、菱形的對角線不一定相等,此選項錯誤;D、菱形既是軸對稱圖形又是中心對稱圖形,此選項正確;故選C.考點:菱形的性質(zhì)3、C【解析】A、因為滿足本選項條件的四邊形ABCD有可能是矩形,因此A中命題不一定成立;B、因為滿足本選項條件的四邊形ABCD有可能是矩形,因此B中命題不一定成立;C、因為由結(jié)合AO+CO=AC=BD=BO+OD可證得AO=CO,BO=DO,由此即可證得此時四邊形ABCD是矩形,因此C中命題一定成立;D、因為滿足本選項條件的四邊形ABCD有可能是等腰梯形,由此D中命題不一定成立.故選C.4、C【解析】分析:根據(jù)30°角的三角函數(shù)值代入計算即可.詳解:2cos30°=2×=.故選C.點睛:此題主要考查了特殊角的三角函數(shù)值的應(yīng)用,熟記30°、45°、60°角的三角函數(shù)值是解題關(guān)鍵.5、A【解析】

先求出每個不等式的解集,再求出不等式組的解集即可.【詳解】解:∵不等式①得:x>1,解不等式②得:x≤2,∴不等式組的解集為1<x≤2,在數(shù)軸上表示為:,故選A.【點睛】本題考查了解一元一次不等式組和在數(shù)軸上表示不等式組的解集,能根據(jù)不等式的解集找出不等式組的解集是解此題的關(guān)鍵.6、B【解析】根據(jù)題意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,7、C【解析】

依據(jù)平行線的性質(zhì),可得∠BAC的度數(shù),再根據(jù)三角形內(nèi)和定理,即可得到∠2的度數(shù).【詳解】解:∵a∥b,∴∠1=∠BAC=40°,又∵∠ABC=90°,∴∠2=90°?40°=50°,故選C.【點睛】本題考查的是平行線的性質(zhì),用到的知識點為:兩直線平行,內(nèi)錯角相等.8、B【解析】試題分析:由數(shù)軸可知,a<-2,A、a的相反數(shù)>2,故本選項正確,不符合題意;B、a的相反數(shù)≠2,故本選項錯誤,符合題意;C、a的絕對值>2,故本選項正確,不符合題意;D、2a<0,故本選項正確,不符合題意.故選B.考點:實數(shù)與數(shù)軸.9、B【解析】

先證明△ABD≌△EBD,從而可得AD=DE,然后先求得△AEC的面積,繼而可得到△CDE的面積.【詳解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面積為1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故選B.【點睛】本題考查了全等三角形的判定,掌握等高的兩個三角形的面積之比等于底邊長度之比是解題的關(guān)鍵.10、D【解析】

連接正六邊形的中心和各頂點,得到六個全等的正三角形,于是可知正六邊形的邊長等于正三角形的邊長,為正六邊形的外接圓半徑.【詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長,即其外接圓半徑為1.故選D.【點睛】本題考查了正六邊形的外接圓的知識,解題的關(guān)鍵是畫出圖形,找出線段之間的關(guān)系.二、填空題(本大題共6個小題,每小題3分,共18分)11、4n﹣1.【解析】由圖可知:第一個圖案有陰影小三角形1個,第二圖案有陰影小三角形1+4=6個,第三個圖案有陰影小三角形1+8=11個,···那么第n個就有陰影小三角形1+4(n﹣1)=4n﹣1個.12、65°【解析】

解:由題意分析之,得出弧BD對應(yīng)的圓周角是∠DAB,所以,=40°,由此則有:∠OCD=65°考點:本題考查了圓周角和圓心角的關(guān)系點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要對圓心角、弧、弦等的基本性質(zhì)要熟練把握13、115°【解析】

根據(jù)過C點的切線與AB的延長線交于P點,∠P=40°,可以求得∠OCP和∠OBC的度數(shù),又根據(jù)圓內(nèi)接四邊形對角互補(bǔ),可以求得∠D的度數(shù),本題得以解決.【詳解】解:連接OC,如右圖所示,

由題意可得,∠OCP=90°,∠P=40°,

∴∠COB=50°,

∵OC=OB,

∴∠OCB=∠OBC=65°,

∵四邊形ABCD是圓內(nèi)接四邊形,

∴∠D+∠ABC=180°,

∴∠D=115°,

故答案為:115°.【點睛】本題考查切線的性質(zhì)、圓內(nèi)接四邊形,解題的關(guān)鍵是明確題意,找出所求問題需要的條件.14、①③【解析】試題解析:∵拋物線開口向上且經(jīng)過點(1,1),雙曲線經(jīng)過點(a,bc),∴,∴bc>0,故①正確;∴a>1時,則b、c均小于0,此時b+c<0,當(dāng)a=1時,b+c=0,則與題意矛盾,當(dāng)0<a<1時,則b、c均大于0,此時b+c>0,故②錯誤;∴可以轉(zhuǎn)化為:,得x=b或x=c,故③正確;∵b,c是關(guān)于x的一元二次方程的兩個實數(shù)根,∴a﹣b﹣c=a﹣(b+c)=a+(a﹣1)=2a﹣1,當(dāng)a>1時,2a﹣1>3,當(dāng)0<a<1時,﹣1<2a﹣1<3,故④錯誤;故答案為①③.15、2,3,1.【解析】分析:根據(jù)題意得出EF的取值范圍,從而得出EF的值.詳解:∵AB=1,∠ABC=60°,∴BD=1,當(dāng)點E和點B重合時,∠FBD=90°,∠BDC=30°,則EF=1;當(dāng)點E和點O重合時,∠DEF=30°,則△EFD為等腰三角形,則EF=FD=2,∴EF可能的整數(shù)值為2、3、1.點睛:本題主要考查的就是菱形的性質(zhì)以及直角三角形的勾股定理,屬于中等難度的題型.解決這個問題的關(guān)鍵就是找出當(dāng)點E在何處時取到最大值和最小值,從而得出答案.16、【解析】試題解析:所以故答案為三、解答題(共8題,共72分)17、(1)300米/分;(2)y=﹣300x+3000;(3)分.【解析】

(1)由圖象看出所需時間.再根據(jù)路程÷時間=速度算出小張騎自行車的速度.

(2)根據(jù)由小張的速度可知:B(10,0),設(shè)出一次函數(shù)解析式,用待定系數(shù)法求解即可.(3)求出CD的解析式,列出方程,求解即可.【詳解】解:(1)由題意得:(米/分),答:小張騎自行車的速度是300米/分;(2)由小張的速度可知:B(10,0),設(shè)直線AB的解析式為:y=kx+b,把A(6,1200)和B(10,0)代入得:解得:∴小張停留后再出發(fā)時y與x之間的函數(shù)表達(dá)式;(3)小李騎摩托車所用的時間:∵C(6,0),D(9,2400),同理得:CD的解析式為:y=800x﹣4800,則答:小張與小李相遇時x的值是分.【點睛】考查一次函數(shù)的應(yīng)用,考查學(xué)生觀察圖象的能力,熟練掌握待定系數(shù)法求一次函數(shù)解析式是解題的關(guān)鍵.18、(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】

(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.

(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;

(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.【詳解】(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180°﹣∠ABC),∵AM=MN∴∠MAN=(180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45°=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.【點睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)定理和判定定理、相似三角形的性質(zhì)定理和判定定理等知識;本題綜合性強(qiáng),有一定難度,證明三角形全等和三角形相似是解決問題的關(guān)鍵.19、證明見解析.【解析】

根據(jù)菱形的性質(zhì),先證明△ABE≌△ADF,即可得解.【詳解】在菱形ABCD中,AB=BC=CD=AD,∠B=∠D.∵點E,F(xiàn)分別是BC,CD邊的中點,∴BE=BC,DF=CD,∴BE=DF.∴△ABE≌△ADF,∴AE=AF.20、(1)m=20,n=8;55;(2)答案見解析.【解析】

(1)由A占25%,即可求得m的值,繼而求得n的值,然后求得空氣質(zhì)量等級為“良”的天數(shù)占的百分比;(2)首先由(1)補(bǔ)全統(tǒng)計圖,然后利用樣本估計總體的知識求解即可求得答案.【詳解】(1)∵m=80×25%=20,n=80-20-44-4-2-2=8,∴空氣質(zhì)量等級為“良”的天數(shù)占:×100%=55%.故答案為20,8,55;(2)估計該市城區(qū)全年空氣質(zhì)量等級為“優(yōu)”和“良”的天數(shù)共:365×(25%+55%)=292(天),答:估計該市城區(qū)全年空氣質(zhì)量等級為“優(yōu)”和“良”的天數(shù)共292天;補(bǔ)全統(tǒng)計圖:【點睛】此題考查了條形圖與扇形圖的知識.讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.21、(Ⅰ)①y=x2+3x②當(dāng)3+6≤S≤6+2時,x的取值范圍為是≤x≤或≤x≤(Ⅱ)ac≤1【解析】

(I)①由拋物線的頂點為A(-2,-3),可設(shè)拋物線的解析式為y=a(x+2)2-3,代入點B的坐標(biāo)即可求出a值,此問得解,②根據(jù)點A、B的坐標(biāo)利用待定系數(shù)法可求出直線AB的解析式,進(jìn)而可求出直線l的解析式,分點P在第二象限及點P在第四象限兩種情況考慮:當(dāng)點P在第二象限時,x<0,通過分割圖形求面積法結(jié)合3+6≤S≤6+2,即可求出x的取值范圍,當(dāng)點P在第四象限時,x>0,通過分割圖形求面積法結(jié)合3+6≤S≤6+2,即可求出x的取值范圍,綜上即可得出結(jié)論,(2)由當(dāng)x=c時y=0,可得出b=-ac-1,由當(dāng)0<x<c時y>0,可得出拋物線的對稱軸x=≥c,進(jìn)而可得出b≤-2ac,結(jié)合b=-ac-1即可得出ac≤1.【詳解】(I)①設(shè)拋物線的解析式為y=a(x+2)2﹣3,∵拋物線經(jīng)過點B(﹣3,0),∴0=a(﹣3+2)2﹣3,解得:a=1,∴該拋物線的解析式為y=(x+2)2﹣3=x2+3x.②設(shè)直線AB的解析式為y=kx+m(k≠0),將A(﹣2,﹣3)、B(﹣3,0)代入y=kx+m,得:,解得:,∴直線AB的解析式為y=﹣2x﹣2.∵直線l與AB平行,且過原點,∴直線l的解析式為y=﹣2x.當(dāng)點P在第二象限時,x<0,如圖所示.S△POB=×3×(﹣2x)=﹣3x,S△AOB=×3×3=2,∴S=S△POB+S△AOB=﹣3x+2(x<0).∵3+6≤S≤6+2,∴,即,解得:≤x≤,∴x的取值范圍是≤x≤.當(dāng)點P′在第四象限時,x>0,過點A作AE⊥x軸,垂足為點E,過點P′作P′F⊥x軸,垂足為點F,則S四邊形AEOP′=S梯形AEFP′﹣S△OFP′=?(x+2)﹣?x?(2x)=3x+3.∵S△ABE=×2×3=3,∴S=S四邊形AEOP′+S△ABE=3x+2(x>0).∵3+6≤S≤6+2,∴,即,解得:≤x≤,∴x的取值范圍為≤x≤.綜上所述:當(dāng)3+6≤S≤6+2時,x的取值范圍為是≤x≤或≤x≤.(II)ac≤1,理由如下:∵當(dāng)x=c時,y=0,∴ac2+bc+c=0,∵c>1,∴ac+b+1=0,b=﹣ac﹣1.由x=c時,y=0,可知拋物線與x軸的一個交點為(c,0).把x=0代入y=ax2+bx+c,得y=c,∴拋物線與y軸的交點為(0,c).∵a>0,∴拋物線開口向上.∵當(dāng)0<x<c時,y>0,∴拋物線的對稱軸x=﹣≥c,∴b≤﹣2ac.∵b=﹣ac﹣1,∴﹣ac﹣1≤﹣2ac,∴ac≤1.【點睛】本題主要考查了待定系數(shù)法求二次(一次)函數(shù)解析式、三角形的面積、梯形的面積、解一元一次不等式組、二次函數(shù)圖象上點的坐標(biāo)特征以及二次函數(shù)的性質(zhì),解題的關(guān)鍵是:(1)①巧設(shè)頂點式,代入點B的坐標(biāo)求出a值,②分點P在第二象限及點P在第四象限兩種情況找出x的取值范圍,(2)根據(jù)二次函數(shù)圖象上點的坐標(biāo)特征結(jié)合二次函數(shù)的性質(zhì),找出b=-ac-1及b≤-2ac.22、(1)520千米;(2)300千米/時.【解析】試題分析:(1)根據(jù)普通列車的行駛路程=高鐵的行駛路程×1.3得出答案;(2)首先設(shè)普通列車的平均速度為x千米/時,則高鐵平均速度為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論