2024年人工智能與機器學習挑戰(zhàn)賽報告-利用AIML眾包解決方案推動可持續(xù)發(fā)展目標(SDGs)的實現(xiàn)(英文版)-ITU國際電信聯(lián)盟_第1頁
2024年人工智能與機器學習挑戰(zhàn)賽報告-利用AIML眾包解決方案推動可持續(xù)發(fā)展目標(SDGs)的實現(xiàn)(英文版)-ITU國際電信聯(lián)盟_第2頁
2024年人工智能與機器學習挑戰(zhàn)賽報告-利用AIML眾包解決方案推動可持續(xù)發(fā)展目標(SDGs)的實現(xiàn)(英文版)-ITU國際電信聯(lián)盟_第3頁
2024年人工智能與機器學習挑戰(zhàn)賽報告-利用AIML眾包解決方案推動可持續(xù)發(fā)展目標(SDGs)的實現(xiàn)(英文版)-ITU國際電信聯(lián)盟_第4頁
2024年人工智能與機器學習挑戰(zhàn)賽報告-利用AIML眾包解決方案推動可持續(xù)發(fā)展目標(SDGs)的實現(xiàn)(英文版)-ITU國際電信聯(lián)盟_第5頁
已閱讀5頁,還剩102頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

ITUPublicationsInternationalTelecommunicationUnion

TelecommunicationStandardizationSector

CrowdsourcingAIand

MachineLearningsolutionsforSDGs

ITUAI/MLChallenges2024Report

ITU

Disclaimer

ThedesignationsemployedandthepresentationofthematerialinthispublicationdonotimplytheexpressionofanyopinionwhatsoeveronthepartofITUconcerningthelegalstatusofanycountry,territory,cityorareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.

ThementionofspecificcompaniesorcertainmanufacturerproductsdoesnotimplythattheyareendorsedorrecommendedbyITUinpreferencetoothersofasimilarnaturethatarenotmentioned.Errorsandomissionsexcepted,thenamesofproprietaryproductsaredistinguishedbyinitialcapitalletters.

AllreasonableprecautionshavebeentakenbyITUtoverifytheinformationcontainedinthispublication.However,thepublishedmaterialisbeingdistributedwithoutwarrantyofanykind,eitherexpressedorimplied.Theresponsibilityfortheinterpretationanduseofthemateriallieswiththereader.

Theopinions,findingsandconclusionsexpressedinthispublicationdonotnecessarilyreflecttheviewsofITUoritsmembership.

ISBN

978-92-61-39451-6(Electronicversion)978-92-61-39461-5(EPUBversion)

978-92-61-39471-4(Mobiversion)

Pleaseconsidertheenvironmentbeforeprintingthisreport.

?ITU2024

Somerightsreserved.ThisworkislicensedtothepublicthroughaCreativeCommonsAttribution-Non-Commercial-ShareAlike3.0IGOlicense(CCBY-NC-SA3.0IGO).

Underthetermsofthislicence,youmaycopy,redistributeandadapttheworkfornon-commercialpurposes,providedtheworkisappropriatelycited.Inanyuseofthiswork,thereshouldbenosuggestionthatITUendorseanyspecificorganization,productsorservices.TheunauthorizeduseoftheITUnamesorlogosisnotpermitted.Ifyouadaptthework,thenyoumustlicenseyourworkunderthesameorequivalentCreativeCommonslicence.Ifyoucreateatranslationofthiswork,youshouldaddthefollowingdisclaimeralongwiththesuggestedcitation:“ThistranslationwasnotcreatedbytheInternationalTelecommunicationUnion(ITU).ITUisnotresponsibleforthecontentoraccuracyofthistranslation.TheoriginalEnglisheditionshallbethebindingandauthenticedition”.Formoreinformation,pleasevisit

/

licenses/by-nc-sa/3.0/igo/

CrowdsourcingAIandMachineLearningsolutionsforSDGs

ITUAI/MLChallenges2024Report

ITU

Foreword

i

TheITUArtificialIntelligenceandMachineLearning(AI/ML)ChallengesarecompetitionswhereanyonecanparticipatetosolveproblemstatementstoadvancetheachievementofSustainableDevelopmentGoals(SDGs)usingAI/ML.Thecompetitionsenableparticipantstoconnectwithnewpartners–andnewtoolsanddataresources–toachievegoalssetoutbyproblemstatementscontributedbyindustryandacademia.

Iampleasedtosaythatthesecompetitionshavewelcomedover8,000participantssincetheirlaunchin2020.

ThecompetitionsstimulateglobalaccesstoAI/MLexpertiseandcapabilitiesandempowerparticipantstocreate,train,and

deployMLmodelsbyofferingcuratedproblemstatements,data,technicalwebinars,mentoring,andhands-ontrainingsessions.Thisenhancesparticipants'skillsandglobalrecognitionandalsosupportsamoreinclusiveITUstandardizationprocessbypavingthewayforparticipantstomakevaluablecontributionstoITU'sspecifications.

Morethan70percentoftheparticipantsin2023werestudents,withalargemajorityfromtheAfricanregion.

Tosharetheoutcomeswiththelargercommunity,solutionssubmittedaresharedasopensourceinseveralrepositoriesontheChallengeGitHub:

/ITU-AI-ML-in-5G

-Challenge

.

Thisreporthighlightstheimportantworkofteamsacrosstheglobe.ItfeatureswinningsolutionsthataretheresultofinnovativeapproachestosolvingproblemswithapplicationsofAIacrossseveraldomains.

SeizoOnoe

DirectorITUTelecommunicationStandardizationBureau

i

Tableofcontents

Foreword

ii

Acronyms

vi

1ExecutiveSummary

1

2Introduction

3

3DomainsandAreasofCompetition

5

3.1AI/MLin5Gand6G(CommunicationNetworks)

5

3.2GeospatialArtificialIntelligence

6

3.3tinyML

6

3.4AIforClimateAction

7

3.5FusionEnergy

7

4Participation

8

4.1MotivationtoParticipate

8

4.2Statistics

9

4.3ChallengePhases/Timeline

11

5Problemstatements

13

6Winningsolutions

15

6.1AI/MLfor5G-EnergyConsumptionModelling

15

6.2Build-a-thon

16

6.3GraphNeuralNetworks(GNN)

16

6.4SmartWeatherStation

17

7Incentives

18

7.1Prizes

18

7.2Certificates

18

8Webinars

20

9Capacitybuilding

21

9.1TechnicalWebinars

21

9.2Hands-OnWorkshops

21

9.3MentoringSessions

21

9.4Round-TableDiscussions

21

iii

9.5OnlineLearningResources

22

9.6CertificationandRecognition

22

10Intellectualpropertyrights

23

11ChallengeSolutionContributions

24

11.1Standards

24

11.2OpenSource

24

11.3JournalandConferencePublications

24

11.4Ecosystemcreation

26

12Judgingthesubmissions

28

12.1Commonoutputformat

28

12.2Additionaloutputforopen-sourcecode

28

12.3Additionaloutputforproprietarycode

28

12.4EvaluationCriteria

28

13Resources

30

14Benefits

31

14.1Benefitsforpartnersandcollaborators

31

14.2BenefitsforParticipants

31

14.3SpecialBenefitsforCertainSponsorCategories

31

15Impact

32

15.1AdvancingTechnologicalInnovation

32

15.2PromotingGlobalCollaboration

32

15.3EnhancingPracticalSkills

32

15.4ContributingtoStandardsDevelopment

32

15.5AddressingSDGs

32

15.6RecognizingandRewardingExcellence

32

15.7BuildingaThrivingEcosystem

33

15.8ShowcasingandDisseminatingResearch

33

16Testimonials

34

17Conclusion

35

Annex1:Data

36

Annex2:ProblemStatementSample

38

Annex3:DataSharingGuidelines

39

iv

Annex4:HostOnboardingGuidelines

44

Listoffiguresandtables

Figures

Figure1:Geographicdistributionofparticipantsbycountry/regionfrom2020

-2023

3

Figure2:Distributionofparticipantsforthechallenge

3

Figure3:VariousdomainscoveredintheITUAI/MLChallenge

4

Figure4:Motivationtoparticipateinthechallenge

8

Figure5:Cumulativegrowthofparticipantsfromthetoptencountriessince2020

9

Figure6:CombinedGrowthoftheChallengebyType

9

Figure7:Participationandtotal#submissionsfor2023invariousdomainsof

theITUAI/MLChallenges

11

Figure8:ParticipantsGenderDistribution

11

Figure9:2023ITUAI/MLChallengeTimeline

12

Figure10:SampleChallengeproblemstatements

13

Figure11:WinnerannouncementofAI/MLfor5G-EnergyConsumption

ModellingchallengeatCOP28inDubai

15

Figure12:2ndGNNetWorkshop

17

Figure13:Aurorasmartweatherstation

17

Figure14:WinnerCertificates

19

Figure15:TheML5Gwebinarseriesin2020

20

Figure16:Thecallforpaperforthespecialissueofthepeer-reviewedITU

JournalforFutureandEvolvingTechnologies

25

Figure17:Ecosystem

26

Figure18:2024ChallengeannouncementinShanghaiduringtheAIfor

GoodInnovateforImpactatWorldAIconference

27

Figure19:TestimonialsfromChallengeorganizersandparticipants

34

Figure20:Guidelines

42

Tables

Table1:CompetitionDetails

10

Table2:ProblemStatementSample

38

Table3:DataClassificationCategories

39

v

Acronyms

ACM

AssociationforComputingMachinery

AI

ArtificialIntelligence

CSV

Comma-separatedValue

FGAN

FocusGroupAutonomousNetworks

GNN

GraphNeuralNetworks

IEEE

InstituteofElectricalandElectronicsEngineers

IPR

IntellectualPropertyRights

ITUJ-FET

InternationalTelecommunicationUnionJournalonFutureandEvolvingTechnologies

ML

MachineLearning

NDA

Non-disclosureAgreement

PoC

ProofofConcept

RRM

RadioResourceManagement

SDG

SustainableDevelopmentGoal

SG

StudyGroup

TSB

TelecommunicationStandardizationBureau

vi

CrowdsourcingAIandMachineLearningsolutionsforSDGs

1ExecutiveSummary

ArtificialIntelligence(AI)isadominanttechnologyandimpactseveryaspectofsociety.AsAIcontinuestoevolve,AI/ML-enabledapplicationsandservicesintegratedwiththefutureofcommunicationnetworkswoulddriveinnovationandrelatedstandards.ITUisattheforefrontofexploringhowbesttoapplyAI/MLthroughvariousinitiativesandprojectstoadvancetheachievementofsustainabledevelopmentgoals(SDGs).ITUAI/MLcompetitions,bringtogetherAI/MLstakeholderstobrainstorm,innovateandsolverelevantproblemsintelecommunicationnetworks,Geospatialchallenges,tinyMLusecases,etc.Buildingonitsstandardscommunity,ITUhasbeenconductingglobalITUAI/MLChallengesmappedtoseveralareasimpactingSDGs.

TheITUAI/MLin5GChallengeaimstosolvereal-worldcommunicationnetworkproblemsusingAIandML,focusingonthedevelopmentandoptimizationof5Gandemerging6Gtechnologies.Participantsengageintechnicalwebinars,mentoring,andhands-onsessions,creatinganddeployingMLmodels,andapplyingITUstandards,therebygainingglobalrecognitionfortheirinnovativesolutions.

TheGeoAIChallengeappliesAI/MLtoaddressreal-worldgeospatialproblemsrelatedtotheUNSDGs.Participantsgainpracticalexperiencebytacklingissuessuchasenvironmentalmonitoring,urbanplanning,anddisasterresponse,promotinginnovativesolutionsforsustainabledevelopment,andofferingprizes,recognition,andcertificatestotopperformers.

ThetinyMLChallengeexploresapplyingmachinelearningtotinydevicesandembeddedsystemstobuildcost-effective,low-power,reliable,andeasy-to-install,solutionsbyleveragingtinyMLtechnology.

TheITUAI/MLChallengeofferscarefullycuratedproblemstatements,amixofreal-worldandsimulateddata,technicalwebinars,mentoring,andhands-onsessions.TeamsparticipatingintheChallengeenable,create,train,anddeployMLmodelsfordifferentdomains.Thisenablesparticipantstonotonlyshowcasetheirtalent,testtheirconceptsonrealdataandreal-worldproblems,andcompeteforglobalrecognitionincludingprizemoneyandcertificates,butalsoentertheworldofITUstandardsbymappingtheirsolutionstoourspecifications.

TheITUAI/MLChallengehashadprofoundimpactsacrossmultipledimensions.

1

CrowdsourcingAIandMachineLearningsolutionsforSDGs

Standards:ThechallengehasfacilitatedtheintegrationofinnovativeAI/MLsolutionsintoITUspecifications,ensuringnewtechnologiesarestandardizedandwidelyadopted.

Research:Thechallengehasspurredcutting-edgeinvestigationsandpracticalapplications,leadingtonumerouspublicationsinjournalsandconferences.

Communitybuilding:ThechallengehasalsofosteredavibrantcommunityofAI/MLpractitioners,withmembersfromdiversebackgroundsandover100countries,creatingaglobalnetworkofcollaboratorsandinnovators.

Capacitybuilding:Thechallengehasprovidedparticipantswithinvaluableskillsthroughtechnicalwebinars,hands-onworkshops,andmentoringsessions,enhancingtheirabilitytotacklereal-worldproblems.

Overall,theITUAI/MLChallengehassignificantlycontributedtotechnologicaladvancement,globalcollaboration,andthedevelopmentofarobustecosystemthatdrivesprogressinAI/MLandcommunicationnetworks.

2

CrowdsourcingAIandMachineLearningsolutionsforSDGs

2Introduction

TheITUAI/MLChallengewaslaunchedin2020.Thefirsteditionranonthetheme“HowtoapplyITU’sMLarchitecturein5Gnetworks”andappliedtothecommunicationnetworksdomain(ITUAI/MLin5GChallenge).ITUisattheforefrontofleveragingAI/MLtoachieveSDGs.Throughavarietyofactivitiesandprojects,ITUbringstogethermultiplestakeholderstobrainstorm,innovate,andsolverelevantproblemsacrossdifferentdomains.TheITUAI/MLChallengeisoneofthekeyinitiativesaimedatfosteringglobalcollaborationandinnovationintheapplicationofAI/MLtoSDGswithanemphasisoncommunicationnetworks.ThischallengehasbeeninstrumentalinexploringhowAIcanbeappliedto5G,geospatialtechnologies,tinyML,andotherareastodriveprogresstowardstheSDGs.

Figure1:Geographicdistributionofparticipantsbycountry/regionfrom2020-2023

Theboundariesandnamesshown,andthedesignationsusedonthismapdonotimplyofficialendorsementoracceptancebytheUnitedNations/ITU.

Note:participantsfrommorethan100countries/regionsparticipatedintheChallenge.Thetopfourcountriesareasfollows:India,UnitedStates,ChinaandNigeria.

Figure2:Distributionofparticipantsforthechallenge

Note:morethan57%ofparticipantsareprofessionalsandaround38%arestudents.

3

CrowdsourcingAIandMachineLearningsolutionsforSDGs

Since2020,theITUAI/MLChallengehasevolvedtoincludemultipledomains,eachaddressingspecificareasofinterestandimpact.Thechallengeconnectsparticipantsfromover100countries,includingstudents,professionals,industryexperts,andacademia,tosolvereal-worldproblemsusingAI/ML.Thecompetitionsoffercarefullycuratedproblemstatements,amixofreal-worldandsimulateddata,technicalwebinars,mentoring,andhands-onsessions.Participantscreate,train,anddeployMLmodels,enablingthemtoshowcasetheirtalent,testtheirconceptsonrealdata,andcompeteforglobalrecognition,includingprizemoneyandcertificates.ThisinitiativealsoprovidesagatewaytotheworldofITUstandards,asparticipantsmaptheirsolutionstoITUspecifications.

ThedomainscoveredintheITUAI/MLChallengeincludeAI/MLin5Gand6G(orcommunicationnetworks),GeoAI,tinyML,AIforClimateAction,andFusion.Eachdomainoffersuniqueopportunitiesforparticipantstoapplytheirskillsandgainhands-onexperienceinaddressingcriticalissues.TheAI/MLin5GChallengefocusesontheapplicationofAI/MLincommunicationnetworks,optimizingthedevelopmentandperformanceof5Gand6Gtechnologies.TheGeoAIChallengeaddressesgeospatialproblemsrelatedtotheUNSDGs.ThetinyMLChallengeexplorestheapplicationofMLintinydevicesandembeddedsystems.TheAIforClimateActionInnovationFactoryaimstodevelopAIsolutionsforcombatingclimatechange,whiletheFusionChallengefocusesonusingMLforpredictivemodelinginfusionenergysystems.Throughthesediversedomains,theITUAI/MLChallengecontinuestodriveinnovationandcollaboration,contributingtotheadvancementofglobalstandardsandthedevelopmentofimpactfulsolutions.

Figure3:VariousdomainscoveredintheITUAI/MLChallenge

The2023ITUAI/MLChallengesawmorethan3300participantsfrom100+countriesinthechallenge.Theseparticipantscontributedover20'000submissionsandreceived56'267CHFinprizemoneyfromITUandsponsors.Detailedstatisticsofthechallengecanbefoundinsection4.2.

4

CrowdsourcingAIandMachineLearningsolutionsforSDGs

3DomainsandAreasofCompetition

Since2020,theITUAI/MLChallengehasevolvedtoincludemultipledomains,eachaddressingspecificareasofinterestandimpact.Thesecompetitionsarerunannually,witheacheditionintroducingnewthemesandexpandingthescopeofthechallenge.ThecompetitionshaveincludedAI/MLin5Gand6G(i.e.communicationnetworks),GeoAI,tinyML,AIforClimateAction,andFusion.Eachdomainoffersuniqueopportunitiesforparticipantstoapplytheirskills,gainhands-onexperience,andcontributetosolvingpressingglobalissues.

3.1AI/MLin5Gand6G(CommunicationNetworks)

Applyingmachinelearningin

communicationnetworks

TheITU

AI/MLin5GChallenge

rallieslike-mindedstudentsandprofessionalsfromaroundtheglobetosolvereal-worldproblemsincommunicationnetworksbyapplyingAIandmachinelearning(ML).TheAI/MLin5GChallenge,launchedasthefirsteditionin2020,hasbecomeacornerstoneoftheITUAI/MLChallenge.ThiscompetitionfocusesonapplyingAI/MLincommunicationnetworks,particularlyinthedevelopmentandoptimizationof5Gandemerging6Gtechnologies.Astelecommunicationnetworksevolvetowards6G,AIisexpectedtobeintegraltothenetwork’sdesign,enablingadvancedfeatureslikeAI-nativeinfrastructure,pervasiveintelligence,andreal-timeresponsiveness.

ITUAI/MLin5GChallengeanalysespracticalproblemsinnetworksusingrealandsimulateddata.Asweaimforenhancedefficiency,reliability,andrichuserexperienceusingAI/MLincommunicationnetworks,ITUcallsfortheapplicationofitspre-standardandstandardconceptsinnetworkmanagement,security,optimization,andbeyondtosolvereal-worldproblems.IntheITUAI/MLin5GChallenge,participantsfromvariousbackgroundscollaboratetosolvereal-worldproblemsusingAI/ML,workingoncuratedproblemstatementswithaccesstoamixofreal-worldandsimulateddata.Thechallengeincludestechnicalwebinars,mentoring,andhands-onsessions,enablingparticipantstocreate,train,anddeployMLmodelsforcommunicationnetworks.ThecompetitionnotonlyshowcasestalentandinnovativesolutionsbutalsoprovidesapathwayforparticipantstoengagewithITUstandardsandgainglobalrecognition.

5

CrowdsourcingAIandMachineLearningsolutionsforSDGs

3.2GeospatialArtificialIntelligence

ApplyingMachineLearningtoGeospatialAnalysis

The

GeospatialArtificialIntelligenceChallenge

(GeoAI),nowenteringitsthirdeditionin2024,addressesreal-worldgeospatialproblemsbyapplyingAI/ML.ThiscompetitionaimstosolveissuesrelatedtotheUNSDGsusingreal-worlddata.ParticipantsgainpracticalexperienceinapplyingAI/MLtogeospatialdata,tacklingproblemssuchasenvironmentalmonitoring,urbanplanning,anddisasterresponse.Thechallengepromotesinnovativesolutionsthatcontributetosustainabledevelopment,offeringprizes,recognition,andcertificatestothetopperformers.

3.3tinyML

ApplyingMachineLearningtoEdgeDevices

The

tinyMLChallenge

,organizedincollaborationwithindustrypartners,explorestheapplicationofmachinelearninginthedomainoftinydevicesandembeddedsystems.Thesecondeditionofthischallengein2023focusedondevelopingaNext-GentinyMLSmartWeatherStationthatiscost-effective,low-power,reliable,andeasytoinstallandmaintain.Thisweatherstationwillmeasurevariousweatherconditions,particularlyrainandwind,usingtinyMLtechnology.Additionally,thetinyMLChallengeincludesprojectsonscalableandhigh-performancesolutionsforcropdiseasedetectionandwildlifemonitoring.Thiscompetitionencouragesinnovationinenvironmentalmonitoringandagriculture,leveragingthecapabilitiesoftinyML.

6

CrowdsourcingAIandMachineLearningsolutionsforSDGs

3.4AIforClimateAction

AnacceleratorplatformforAI-poweredclimatechangesolutionsfromstart-ups

Climatechangeisasignificantglobalchallengewithfar-reachingimpacts.The

AIforClimateAction

InnovationFactory

,launchedattheAIforGoodSummitin2024,seekstoadvancetheuseofAIincombatingclimatechange.ThisinitiativebuildsonprevioussuccessesandfocusesondevelopingAIsolutionsthataddressclimate-relatedissues.The2024editionaimstoshowcasethesesolutionsatCOP29,theUnitedNationsClimateChangeConferenceinBaku,Azerbaijan.ThewinnersofthiscompetitionwillberecognizedfortheircontributionstotheGreenDigitalActiontrack,highlightingtheroleofAIinpromotingsustainablepracticesandmitigatingclimatechange.

3.5FusionEnergy

The

FusionChallenge

,partoftheIAEACoordinatedResearchProjectonAIforFusion,exploresthepotentialofMLinpredictivemodelingforfusionenergysystems.Fusionenergy,generatedbycombininglightelementstoformaheavierone,representsapromisingalternativeenergysource.Thischallengeengagesthescientificcommunityindevelopingcross-machinedisruptionpredictionmodelsusingML,utilizingdatafromfusiondevicessuchasAlcatorC-Mod,J-TEXT,andHL-2A.Participantsgainhands-onexperienceinAI/MLapplicationsrelevanttofusionenergyscience,competingforprizes,recognition,andcertificates.Thiscompetitionsupportstheglobalefforttomakefusionacommerciallyviableenergysource.

TheITUAI/MLChallenge,throughitsdiversedomainsandcompetitions,continuestodriveinnova-tionandcollaborationinAI/ML.Byaddressingcriticalissuesacrossvarioussectors,thechallengecontributestotheadvancementofglobalstandardsandthedevelopmentofsolutionsthathaveasignificantimpactonsociety.

7

CrowdsourcingAIandMachineLearningsolutionsforSDGs

4Participation

ParticipationisopentoITUmembersandanyindividualfromanITUMemberState.“Participants”areindividualsorcompaniesthatparticipateintheITUAI/MLin5GChallenge,providingsolutionstoproblemsetsoftheChallenge.

Therearetwocategoriesofparticipants:studentandprofessional.

4.1MotivationtoParticipate

Aftereachiterationofthechallengeiscompleted,participantsareaskedtocompleteasurveypreparedbythechallengesecretariat.Oneofthekeyquestionsinthesurveyfocusesontheparticipants'motivationforjoiningthechallenge.ThefigurebelowillustratesthevariousreasonswhyindividualschoosetoparticipateintheITUAI/MLChallenges.Notably,theprimarymotivationformostparticipantsistheopportunitytoupskillorenhancetheirprofessionaloracademiccapabilities,ratherthanthepursuitofprizes.

Figure4:Motivationtoparticipateinthechallenge

8

CrowdsourcingAIandMachineLearningsolutionsforSDGs

4.2Statistics

ITU’smachinelearningchallengeshaveseenanexponentialincreaseinparticipationsince2020,welcomingover8,000participantsfrommorethan100countries,withdevelopingcountriesparticularlywellrepresented,asthechartbelowdemonstrates.

Figure5:Cumulativegrowthofparticipantsfromthetoptencountriessince2020

Thenumberofparticipantshasincreasedfourtimessince2020reachingaround8000intheyear2023.Seethegraphbelow:

Figure6:CombinedGrowthoftheChallengebyType

9

CrowdsourcingAIandMachineLearningsolutionsforSDGs

Participantsinthechallengehavemademorethan23’000submissionstothechallengebyJuneof2024.ThebelowtablesshowgranularparticipationdetailstosomeproblemstatementsoftheITUAI/MLChallengeproblemstatementsin2023.MostoftheseproblemstatementswerehostedthroughtheZindiplatform.

Table1:CompetitionDetails

10

CrowdsourcingAIandMachineLearningsolutionsforSDGs

Figure7:Participationandtotal#submissionsfor2023invariousdomainsoftheITUAI/MLChallenges

Thegenderdistributiongraphrevealsthatnearly80%oftheparticipantsaremale,highlightingtheimportanceofencouraginggreaterfemaleparticipation.

Figure8:ParticipantsGenderDistribution

4.3ChallengePhases/Timeline

TheITUAI/MLChallengeisrunthroughouttheyeardependingonproblemstatementsprovidedbypartners.Anexampleofachallengetimelineforthe2023ITUAI/MLin5GChallengeisillustratedbelowtoshowthevariousphasesofthechallenge.

11

CrowdsourcingAIandMachineLearningsolutionsforSDGs

Figure9:2023ITUAI/MLChallengeTimeline

12

CrowdsourcingAIandMachineLearningsolutionsforSDGs

5Problemstatements

ParticipantsoftheITUAI/MLChallengecansolvereal-worldproblems(includingthosewithsocialrelevance).ProblemstatementsarecontributedeitherfromITU’sstandardsandspecifications,orfromhostsofproblemstatementswhoareinstitutionsinterestedinadvancingSDGsorcanbedecidedbytheparticipant(s)themselves.Problemstatementswillfallintoaspecificchallengedomainbasedontheproblemowner(host)interestandresources.

The

AIforGoodGlobalSummit

identifiespracticalapplicationsofAI/MLwiththepotentialtoaccelerateprogresstowardsthe

UnitedNationsSustainableDevelopmentGoals

.Solutionsareinvitedinfieldssuchaseducation,healthcareandwellbeing,socialandeconomicequality,climateaction,naturaldisastermanagement,space,andsmartandsafemobility.SelectedteamswillbeinvitedtoparticipateintheAIforGoodSummit.

Figure10:SampleChallengeproblemstatements

TheITUAI/MLChallengecontinuestohostproblemstatementsfromhostsaroundtheworld.Someofthescheduledproblemstatementsareasfollows:

?GreenTelecom:SmartEnergySupplyScheduling[Smartenergysupplyschedulingforbothcarbonfootprintreductionandnetworkreliabilityguarantee]

?Beam-levelTrafficPrediction

?SpecializingLargeLanguageModelsforTelecomNetworks

?Ground-levelNO2EstimationChallenge

?RadioResourceManagement(RRM)for6Gin-XSubnetworks

TheITUAI/MLChallengeservesasacrucialbridgebetweencurrentinnovationsandfutureresearchandstandards.Byengagingparticipantsinsolvingreal-worldproblemsusingAIandML,thechallengefostersthedevelopmentofpracticalsolutionsthatcaninformfutureresearchdirections.Thesesolutionsoftenleadtonewinsightsanddiscoveries,fuellingfurtherinvestigationsandacademicstudies.

13

CrowdsourcingAIandMachineLearningsol

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論