版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆湖南省雅禮洋湖中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如下圖,面與面所成二面角的大小為,且A,B為其棱上兩點(diǎn).直線AC,BD分別在這個(gè)二面角的兩個(gè)半平面中,且都垂直于AB,已知,,,則()A. B.C. D.2.已知、是橢圓的兩個(gè)焦點(diǎn),P為橢圓C上一點(diǎn),且,若的面積為9,則的值為()A.1 B.2C.3 D.43.如圖,在四棱錐中,平面,底面是正方形,,則下列數(shù)量積最大的是()A. B.C. D.4.將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再將所得圖象向右平移個(gè)單位長度,得到函數(shù)的圖象,則()A. B.C. D.5.已知直線:和:,若,則實(shí)數(shù)的值為()A. B.3C.-1或3 D.-16.三個(gè)實(shí)數(shù)構(gòu)成一個(gè)等比數(shù)列,則圓錐曲線的離心率為()A. B.C.或 D.或7.若不等式在上有解,則的最小值是()A.0 B.-2C. D.8.已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)是橢圓上的一點(diǎn),點(diǎn)是線段的中點(diǎn),為坐標(biāo)原點(diǎn),若,則()A.3 B.4C.6 D.119.已知長方體中,,,則直線與所成角的余弦值是()A. B.C. D.10.某地區(qū)高中分三類,A類學(xué)校共有學(xué)生2000人,B類學(xué)校共有學(xué)生3000人,C類學(xué)校共有學(xué)生4000人,若采取分層抽樣的方法抽取900人,則A類學(xué)校中的學(xué)生甲被抽到的概率()A. B.C. D.11.已知定義在R上的函數(shù)滿足,且當(dāng)時(shí),,則下列結(jié)論中正確的是()A. B.C. D.12.三棱柱中,,,,若,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.寫出直線一個(gè)方向向量______14.萊昂哈德·歐拉于1765年在他的著作《三角形的幾何學(xué)》中首次提出定理:三角形的重心、垂心和外心共線.后來人們稱這條直線為該三角形的歐拉線.已知的三個(gè)頂點(diǎn)坐標(biāo)分別是,,,則的垂心坐標(biāo)為______,的歐拉線方程為______15.2021年7月24日,在東京奧運(yùn)會(huì)女子10米氣步槍決賽中,中國選手楊倩以251.8環(huán)的總成績奪得金牌,為中國代表團(tuán)摘得本屆奧運(yùn)會(huì)首金.已知楊倩其中5次射擊命中的環(huán)數(shù)如下:10.8,10.6,10.6,10.7,9.8,則這組數(shù)據(jù)的方差為______16.總書記在2021年2月25日召開的全國脫貧攻堅(jiān)總結(jié)表彰大會(huì)上發(fā)表重要講話,莊嚴(yán)宣告,在迎來中國共產(chǎn)黨成立一百周年的重要時(shí)刻,我國脫貧攻堅(jiān)取得了全面勝利.在脫貧攻堅(jiān)過程中,為了解某地農(nóng)村經(jīng)濟(jì)情況,工作人員對(duì)該地農(nóng)戶家庭年收入進(jìn)行抽樣調(diào)查,將農(nóng)戶家庭年收入的調(diào)查數(shù)據(jù)整理得到如下頻率分布直方圖:根據(jù)此頻率分布直方圖,下列結(jié)論中所存確結(jié)論的序號(hào)是____________①該地農(nóng)戶家庭年收入低于4.5萬元的農(nóng)戶比率估計(jì)為6%;②該地農(nóng)戶家庭年收入不低于10.5萬元的農(nóng)戶比率估計(jì)為10%;③估計(jì)該地農(nóng)戶家庭年收入的平均值不超過6.5萬元;④估計(jì)該地有一半以上農(nóng)戶,其家庭年收入介于4.5萬元至8.5萬元之間三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知三棱柱的側(cè)棱與底面垂直,,,和分別是和的中點(diǎn),點(diǎn)在直線上,且.(1)證明:無論取何值,總有;(2)是否存在點(diǎn),使得平面與平面所成角為?若存在,試確定點(diǎn)的位置;若不存在,請(qǐng)說明理由.18.(12分)保護(hù)生態(tài)環(huán)境,提倡環(huán)保出行,節(jié)約資源和保護(hù)環(huán)境,某地區(qū)從2016年開始大力提倡新能源汽車,每年抽樣1000汽車調(diào)查,得到新能源汽車y輛與年份代碼x年的數(shù)據(jù)如下表:年份20162017201820192020年份代碼第x年12345新能源汽車y輛305070100110(1)建立y關(guān)于x的線性回歸方程;(2)假設(shè)該地區(qū)2022年共有30萬輛汽車,用樣本估計(jì)總體來預(yù)測該地區(qū)2022年有多少新能源汽車參考公式:回歸方程斜率和截距的最小二乘估計(jì)公式分別為,19.(12分)如圖,PD垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°,F(xiàn)為PA中點(diǎn),,.四邊形PDCE為矩形,線段PC交DE于點(diǎn)N(1)求證:AC∥平面DEF;(2)求二面角A-BC-P的余弦值20.(12分)設(shè)銳角三角形ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,.(1)求B的大?。?)若,,求b.21.(12分)從某居民區(qū)隨機(jī)抽取2021年的10個(gè)家庭,獲得第個(gè)家庭的月收入(單位:千元)與月儲(chǔ)蓄(單位:千元)的數(shù)據(jù)資料,計(jì)算得,,,(1)求家庭的月儲(chǔ)蓄對(duì)月收入的線性回歸方程;(2)判斷變量與之間是正相關(guān)還是負(fù)相關(guān);(3)利用(1)中的回歸方程,分析2021年該地區(qū)居民月收入與月儲(chǔ)蓄之間的變化情況,并預(yù)測當(dāng)該居民區(qū)某家庭月收入為7千元,該家庭的月儲(chǔ)蓄額.附:線性回歸方程系數(shù)公式中,,,其中,為樣本平均值22.(10分)已知的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且(1)求B;(2)若,求的面積的最大值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)題意,作,且,則四邊形ABDE為平行四邊形,進(jìn)一步判斷出該四邊形為矩形,然后確定出為二面角的平面角,進(jìn)而通過余弦定理和勾股定理求得答案.【詳解】如圖,作,且,則四邊形ABDE為平行四邊形,所以.因?yàn)?,所以,又,所以是該二面角的一個(gè)平面角,即,由余弦定理.因?yàn)?,,所以,易得四邊形ABDE為矩形,則,而,所以平面ACE,則,于是.故選:B.2、C【解析】根據(jù)橢圓定義,和條件列式,再通過變形計(jì)算求解.【詳解】由條件可知,,即,解得:.故選:C【點(diǎn)睛】本題考查橢圓的定義,焦點(diǎn)三角形的性質(zhì),重點(diǎn)考查轉(zhuǎn)化與變形,計(jì)算能力,屬于基礎(chǔ)題型.3、B【解析】設(shè),根據(jù)線面垂直的性質(zhì)得,,,,根據(jù)向量數(shù)量積的定義逐一計(jì)算,比較可得答案.【詳解】解:設(shè),因?yàn)槠矫?,所以,,,,又底面是正方形,所以,,?duì)于A,;對(duì)于B,;對(duì)于C,;對(duì)于D,,所以數(shù)量積最大的是,故選:B.4、A【解析】根據(jù)三角函數(shù)圖象的變換,由逆向變換即可求解.【詳解】由已知的函數(shù)逆向變換,第一步,向左平移個(gè)單位長度,得到的圖象;第二步,圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到的圖象,即的圖象.故.故選:A5、D【解析】利用兩直線平行列式求出a值,再驗(yàn)證即可判斷作答.【詳解】因,則,解得或,當(dāng)時(shí),與重合,不符合題意,當(dāng)時(shí),,符合題意,所以實(shí)數(shù)的值為-1.故選:D6、D【解析】根據(jù)三個(gè)實(shí)數(shù)構(gòu)成一個(gè)等比數(shù)列,解得,然后分,討論求解.【詳解】因?yàn)槿齻€(gè)實(shí)數(shù)構(gòu)成一個(gè)等比數(shù)列,所以,解得,當(dāng)時(shí),方程表示焦點(diǎn)在x軸上的橢圓,所以,所以,當(dāng)時(shí),方程表示焦點(diǎn)在y軸上的雙曲線,所以,所以,故選:D7、D【解析】將題設(shè)條件轉(zhuǎn)化為在上有解,然后求出的最大值即可得解.【詳解】不等式在上有解,即為在上有解,設(shè),則在上單調(diào)遞減,所以,所以,即,故選:D.【點(diǎn)睛】本題主要考查二次不等式能成立問題,可以選擇分離參數(shù)轉(zhuǎn)化為最值問題,也可以進(jìn)行分情況討論.8、A【解析】利用橢圓的定義可得,再結(jié)合條件即求.【詳解】由橢圓的定義可知,因?yàn)?,所以,因?yàn)辄c(diǎn)分別是線段,的中點(diǎn),所以是的中位線,所以.故選:A.9、C【解析】建立空間直角坐標(biāo)系,設(shè)直線與所成角為,由求解.【詳解】∵長方體中,,,∴分別以,,為,,軸建立如圖所示空間直角坐標(biāo)系,,則,,,,所以,,設(shè)直線與所成角為,則,∴直線和夾角余弦值是.故選:C.10、D【解析】利用抽樣的性質(zhì)求解【詳解】所有學(xué)生數(shù)為,所以所求概率為.故選:D11、B【解析】由可得,利用導(dǎo)數(shù)判斷函數(shù)在上的單調(diào)性,由此比較函數(shù)值的大小確定正確選項(xiàng).【詳解】∵∴,當(dāng)時(shí),,∴,故∴在內(nèi)單調(diào)遞增,又,∴,所以故選:B12、A【解析】利用空間向量線性運(yùn)算及基本定理結(jié)合圖形即可得出答案.【詳解】解:由,,,若,得.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】本題可先將直線的一般式化為斜截式,然后根據(jù)斜率即可得到直線的一個(gè)方向向量.【詳解】由題意可知,直線可以化為,所以直線的斜率為,直線的一個(gè)方向向量可以寫為.故答案為:.14、①.##(0,1.5)②.【解析】由高線聯(lián)立可得垂心,由垂心與重心可得歐拉線方程.【詳解】由,可知邊上的高所在的直線為,又,因此邊上的高所在的直線的斜率為,所以邊上的高所在的直線為:,即,所以,所以的垂心坐標(biāo)為,由重心坐標(biāo)公式可得的重心坐標(biāo)為,所以的歐拉線方程為:,化簡得.故答案為:;15、128【解析】先求均值,再由方差公式計(jì)算【詳解】由已知,所以,故答案為:16、①②④【解析】利用頻率分布直方圖中頻率的求解方法,通過求解頻率即可判斷選項(xiàng)①,②,④,利用平均值的計(jì)算方法,即可判斷選項(xiàng)③【詳解】解:對(duì)于①,該地農(nóng)戶家庭年收入低于4.5萬元的農(nóng)戶比率為,故選項(xiàng)①正確;對(duì)于②,該地農(nóng)戶家庭年收入不低于10.5萬元的農(nóng)戶比率為,故選項(xiàng)②正確;對(duì)于③,估計(jì)該地農(nóng)戶家庭年收入的平均值為萬元,故選項(xiàng)③錯(cuò)誤;對(duì)于④,家庭年收入介于4.5萬元至8.5萬元之間的頻率為,故估計(jì)該地有一半以上的農(nóng)戶,其家庭年收入介于4.5萬元至8.5萬元之間,故選項(xiàng)④正確故答案為:①②④三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)不存在,理由見解析.【解析】(1)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,計(jì)算得出,即可得出結(jié)論;(2)計(jì)算出平面的一個(gè)法向量,利用空間向量法可得出關(guān)于的方程,即可得出結(jié)論.【詳解】(1)因?yàn)槠矫?,,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,則、、、,,,所以,,則,因此,無論取何值,總有;(2),設(shè)平面的法向量為,則,取,則,,所以,平面的一個(gè)法向量為,易知平面的一個(gè)法向量為,由題意可得,整理可得,,此方程無解,因此,不存在點(diǎn),使得平面與平面所成的角為.18、(1)(2)46800【解析】(1)第一步分別算第x,y的平均值,第二步利用,即可得到方程.(2)由第一問的結(jié)果,帶入方程即可算出預(yù)估的結(jié)果.【小問1詳解】,,,因?yàn)?,所以,所以【小?詳解】預(yù)測該地區(qū)2022年抽樣1000汽車調(diào)查中新能源汽車數(shù),當(dāng)時(shí),,該地區(qū)2022年共有30萬輛汽車,所以新能源汽車.19、(1)證明見解析;(2).【解析】(1)記PC交DE于點(diǎn)N,然后證明FN∥AC,進(jìn)而通過線面平行的判定定理證明問題;(2)建立空間直角坐標(biāo)系,進(jìn)而通過空間向量夾角公式求得答案.【小問1詳解】因?yàn)樗倪呅蜳DCE為矩形,線段PC交DE于點(diǎn)N,所以N為PC的中點(diǎn)連接FN,在△PAC中,F(xiàn),N分別為PA,PC的中點(diǎn),所以FN∥AC,因?yàn)槠矫鍰EF,平面DEF,所以AC∥平面DEF.【小問2詳解】因?yàn)镻D垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°,所以DA,DC,DP兩兩垂直,如圖以D為原點(diǎn),分別以DA,DC,DP所在直線為x,y,z軸,建立空間直角坐標(biāo)系則,,,,所以,設(shè)平面PBC的法向量為,則,令x=1,則.因?yàn)镻D垂直于梯形ABCD所在的平面,所以是平面ABC的一個(gè)法向量,所以.由圖可知所求二面角為銳角,即所求二面角的余弦值為.20、(1);(2)【解析】(1)由正弦定理,可得,進(jìn)而可求出和角;(2)利用余弦定理,可得,即可求出.【詳解】(1)由,得,因?yàn)?,所以,又因?yàn)锽為銳角,所以(2)由余弦定理,可得,解得【點(diǎn)睛】本題考查正弦、余弦定理在解三角形中的運(yùn)用,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.21、(1)=0.3x-0.4(2)正相關(guān)(3)1.7千元【解析】(1)由題意得到n=10,求得,進(jìn)而求得,寫出回歸方程;.(2)由判斷;(3)將x=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 護(hù)理部工作計(jì)劃匯編
- 小學(xué)一年級(jí)下學(xué)期工作計(jì)劃
- 區(qū)2025年度計(jì)劃生育工作計(jì)劃2
- 分廠第十六個(gè)百日安全無事故活動(dòng)計(jì)劃
- 《外科常見急腹癥》課件
- 《水暖理論知識(shí)培訓(xùn)》課件
- 《氨基酸之亮氨酸》課件
- 合同 第三方費(fèi)用 報(bào)銷條款
- 鐵路培訓(xùn)合同
- 2025年阿克蘇貨運(yùn)從業(yè)資格證模擬考試題目
- 宜昌市建設(shè)工程文件歸檔內(nèi)容及排列順序
- 項(xiàng)目全周期現(xiàn)金流管理培訓(xùn)
- 生物化學(xué)實(shí)驗(yàn)智慧樹知到答案章節(jié)測試2023年浙江大學(xué)
- 少兒美術(shù)教案課件-《美麗的楓葉》
- 中國傳統(tǒng)文化剪紙PPT模板
- 高中家長給孩子寄語
- 藥物警戒體系主文件(根據(jù)指南撰寫)
- 2022重癥醫(yī)學(xué)科優(yōu)質(zhì)護(hù)理工作計(jì)劃
- 系列壓路機(jī)xmr30s40s操作保養(yǎng)手冊(cè)
- 廣州教科版六年級(jí)英語上冊(cè)M1-6復(fù)習(xí)練習(xí)題(含答案)
- GB/T 24159-2022焊接絕熱氣瓶
評(píng)論
0/150
提交評(píng)論