陜西省西安市長安區(qū)一中2025屆高二數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第1頁
陜西省西安市長安區(qū)一中2025屆高二數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第2頁
陜西省西安市長安區(qū)一中2025屆高二數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第3頁
陜西省西安市長安區(qū)一中2025屆高二數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第4頁
陜西省西安市長安區(qū)一中2025屆高二數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

陜西省西安市長安區(qū)一中2025屆高二數(shù)學第一學期期末質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若是雙曲線的左右焦點,是坐標原點.過作的一條漸近線的垂線,垂足為,若,則該雙曲線的離心率為()A. B.C. D.2.已知點分別是橢圓的左、右焦點,點P在此橢圓上,,則的面積等于A. B.C. D.3.某口罩生產(chǎn)商為了檢驗產(chǎn)品質(zhì)量,從總體編號為001,002,003,…,499,500的500盒口罩中,利用下面的隨機數(shù)表選取10個樣本進行抽檢,選取方法是從下面的隨機數(shù)表第1行第5列的數(shù)字開始由左向右讀取,則選出的第3個樣本的編號為()160011661490844511657388059052274114862298122208075274958035696832506128473975345862A.148 B.116C.222 D.3254.已知等比數(shù)列的前項和為,首項為,公比為,則()A. B.C. D.5.雙曲線的左、右焦點分別為、,點P在雙曲線右支上,,,則C的離心率為()A. B.2C. D.6.雅言傳承文明,經(jīng)典浸潤人生.某市舉辦“中華經(jīng)典誦寫講大賽”,大賽分為四類:“誦讀中國”經(jīng)典誦讀大賽、“詩教中國”詩詞講解大賽、“筆墨中國”漢字書寫大賽、“印記中國”學生篆刻大賽.某人決定從這四類比賽中任選兩類參賽,則“誦讀中國”被選中的概率為()A. B.C. D.7.已知中,內(nèi)角所對的邊分別,若,,,則()A. B.C. D.8.已知數(shù)列為等比數(shù)列,則“為常數(shù)列”是“成等差數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件9.已知橢圓=1(a>b>0)的右焦點為F,橢圓上的A,B兩點關(guān)于原點對稱,|FA|=2|FB|,且·≤a2,則該橢圓離心率的取值范圍是()A.(0,] B.(0,]C.,1) D.,1)10.已知等比數(shù)列的前n項和為,,,則()A. B.C. D.11.“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件12.已知數(shù)列中,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設直線,直線,若,則_______.14.當為任意實數(shù)時,直線恒過定點,則以點C為圓心,半徑為圓的標準方程______15.設函數(shù),,若存在,成立,則實數(shù)的取值范圍為__________.16.已知函數(shù).(1)若的解集為,求a,b的值;(2)若,a,b均正實數(shù),求的最小值;(3)若,當時,若不等式恒成立,求實數(shù)b的值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某餐館將推出一種新品特色菜,為更精準確定最終售價,這種菜按以下單價各試吃1天,得到如下數(shù)據(jù):(1)求銷量關(guān)于的線性回歸方程;(2)預計今后的銷售中,銷量與單價服從(1)中的線性回歸方程,已知每份特色菜的成本是15元,為了獲得最大利潤,該特色菜的單價應定為多少元?(附:,)18.(12分)如下圖,已知點是離心率為的橢圓:上的一點,斜率為的直線交橢圓于、兩點,且、、三點互不重合(1)求橢圓的方程;(2)求證:直線,的斜率之和為定值19.(12分)2021年10月16日,搭載“神舟十三號”的火箭發(fā)射升空,有很多民眾通過手機、電視等方式觀看有關(guān)新聞.某機構(gòu)將關(guān)注這件事的時間在2小時以上的人稱為“天文愛好者”,否則稱為“非天文愛好者”,該機構(gòu)通過調(diào)查,從參與調(diào)查的人群中隨機抽取100人進行分析,得到下表(單位:人):天文愛好者非天文愛好者合計女203050男351550合計5545100(1)能否有99%的把握認為“天文愛好者”或“非天文愛好者”與性別有關(guān)?(2)現(xiàn)從抽取的女性人群中,按“天文愛好者”和“非天文愛好者”這兩種類型進行分層抽樣抽取5人,然后再從這5人中隨機選出3人,記其中“天文愛好者”的人數(shù)為X,求X的分布列和數(shù)學期望附:,其中n=a+b+c+d0.100.050.0100.0050.0012.7063.8416.6357.87910.82820.(12分)已知數(shù)列是正項數(shù)列,,且.(1)求數(shù)列的通項公式;(2)設,數(shù)列的前項和為,若對恒成立,求實數(shù)的取值范圍.21.(12分)如圖,在正方體中,分別是,的中點.求證:(1)平面;(2)平面平面.22.(10分)已知數(shù)列滿足(1)求數(shù)列的通項公式;(2)是否存在正實數(shù)a,使得不等式對一切正整數(shù)n都成立?若存在,求出a的取值范圍;若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)已知條件,找出,的齊次關(guān)系式即可得到雙曲線的離心率.【詳解】由題意得,,,在中,,因,故,在,由余弦定理得,即,計算得,故.故選:D.【點睛】雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個條件得到關(guān)于a,b,c的齊次式,結(jié)合轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)2、B【解析】根據(jù)橢圓標準方程,可得,結(jié)合定義及余弦定理可求得值,由及三角形面積公式即可求解.【詳解】橢圓則,所以,則由余弦定理可知代入化簡可得,則,故選:B.【點睛】本題考查了橢圓的標準方程及幾何性質(zhì)的簡單應用,正弦定理與余弦定理的簡單應用,三角形面積公式的用法,屬于基礎題.3、A【解析】按隨機數(shù)表法逐個讀取數(shù)字即可得到答案.【詳解】根據(jù)隨機數(shù)表法讀取的數(shù)字分別為:116,614(舍),908(舍),445,116(舍),573(舍),880(舍),590(舍),522(舍),741(舍),148,故選出的第3個樣本的編號為148.故選:A.4、D【解析】根據(jù)求解即可.【詳解】因為等比數(shù)列,,所以.故選:D5、C【解析】由,所以為直角三角形,根據(jù)雙曲線的定義結(jié)合勾股定理可得答案.【詳解】由,所以為直角三角形.,根據(jù)雙曲線的定義可得所以,即,即,所以故選:C6、B【解析】由已知條件得基本事件總數(shù)為種,符合條件的事件數(shù)為3中,由古典概型公式直接計算即可.【詳解】從四類比賽中選兩類參賽,共有種選擇,其中“誦讀中國”被選中的情況有3種,即“誦讀中國”和“詩教中國”,“誦讀中國”和“筆墨中國”,“誦讀中國”和“印記中國”,由古典概型公式可得,故選:.7、B【解析】利用正弦定理可直接求得結(jié)果.【詳解】在中,由正弦定理得:.故選:B.8、C【解析】先考慮充分性,再考慮必要性即得解.【詳解】解:如果為常數(shù)列,則成等差數(shù)列,所以“為常數(shù)列”是“成等差數(shù)列”的充分條件;等差數(shù)列,所以,所以數(shù)列為,所以數(shù)列是常數(shù)列,所以“為常數(shù)列”是“成等差數(shù)列”的必要條件.所以“為常數(shù)列”是“成等差數(shù)列”的充要條件.故選:C9、B【解析】如圖設橢圓的左焦點為E,根據(jù)題意和橢圓的定義可知,利用余弦定理求出,結(jié)合平面向量的數(shù)量積計算即可.【詳解】由題意知,如圖,設橢圓的左焦點為E,則,因為點A、B關(guān)于原點對稱,所以四邊形為平行四邊形,由,得,,在中,,所以,由,得,整理,得,又,所以.故選:B10、A【解析】由,可得等比數(shù)列公比q=2,利用等比數(shù)列求和公式和通項公式即可求.【詳解】設等比數(shù)列的公比為q,則,.故選:A.11、B【解析】根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:由,得,反之不成立,如,,滿足,但是不滿足,故“”是“”的充分不必要條件故選:B12、D【解析】由數(shù)列的遞推公式依次去求,直到求出即可.【詳解】由,可得,,,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##0.5【解析】根據(jù)兩直線平行可得,,即可求出【詳解】依題可得,,解得故答案為:14、【解析】先求得直線過的定點C,再寫出圓的標準方程.【詳解】直線可化為,則,解得,所以直線恒過定點,所以以點C為圓心,半徑為圓的標準方程是,故答案為:15、【解析】由不等式分離參數(shù),令,則求即可【詳解】由,得,令,則當時,;當時,;所以在上單調(diào)遞減,在上單調(diào)遞增,故由于存在,成立,則故答案為:16、(1),;(2);(3)【解析】(1)根據(jù)韋達定理解求得答案;(2)根據(jù)題意,,進而化簡,然后結(jié)合基本不等式解得答案;(3)討論,和x=2三種情況,進而分參轉(zhuǎn)化為求函數(shù)的最值問題,最后求得答案.【小問1詳解】由已知可知方程的兩個根為,2,由韋達定理得,,故,.【小問2詳解】由題意得,,所以,當且僅當時取等號.【小問3詳解】若,,不等式恒成立.當時,,此時,即對于恒成立,單調(diào)遞減,此時,,所以;當時,,此時,即即對于恒成立,在單調(diào)遞減,此時,所以;當x=2時,.綜上所述:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)24【解析】(1)求出,的值,根據(jù)公式求出的值,代入公式即可求出回歸直線方程(2)根據(jù)(1)的結(jié)論,求出利潤,根據(jù)二次函數(shù)的性質(zhì),即可求解【詳解】解:(1)由題意得,,,,得,,所以關(guān)于的線性回歸方程為:.(2)由題意得,每份菜獲得的利潤,∴當時,取最大值,∴單價應定為24元,可獲得最大利潤.【點睛】本題考查回歸直線的求法與應用,著重考查計算化簡的能力,屬基礎題18、(1);(2)證明見解析.【解析】(1)根據(jù)離心率為可得,把代入方程可得,又,解方程組即可求得方程;(2)設直線的方程為,整理方程組,求得,及參數(shù)的范圍,由斜率公式表示出,結(jié)合直線方程和韋達定理整理即可得到定值.試題解析:(1)由題意,可得,代入得,又,解得,,所以橢圓的方程為.(2)證明:設直線的方程為,又,,三點不重合,∴,設,,由得,所以,解得,,①,②設直線,的斜率分別為,,則(),分別將①②式代入(),得,所以,即直線,的斜率之和為定值考點:橢圓的標準方程及直線與橢圓的位置關(guān)系.【方法點睛】本題主要考查了橢圓的標準方程及直線與橢圓的位置關(guān)系,考查了方程的思想和考試與運算能力,屬于中檔題.求橢圓方程通常用待定系數(shù)法,注意隱含條件;研究圓錐曲線中的定值問題,通常根據(jù)交點與方程組解得對應性,設而不解,表示出待求定值的表達式,利用韋達定理代入整理,消去參數(shù)即可得到定值.19、(1)有(2)分布列見解析,【解析】(1)依題意由列聯(lián)表計算出卡方,與參考數(shù)值比較,即可判斷;(2)按照分層抽樣得到有2人為“天文愛好者”,有3人為“非天文愛好者”,記“天文愛好者”的人數(shù)為X,則X的可能值為0,1,2,即可求出所對應的概率,從而得到分布列與數(shù)學期望;【小問1詳解】解:由題意,所以有99%的把握認為“天文愛好者”或“非天文愛好者”與性別有關(guān).【小問2詳解】解:抽取的100人中女性人群有50人,其中“天文愛好者”有20人,“非天文愛好者”有30人,所以按分層抽樣在50個女性人群中抽取5人,則有2人為“天文愛好者”,有3人為“非天文愛好者”再從這5人中隨機選出3人,記其中“天文愛好者”的人數(shù)為X,則X的可能值為0,1,2,∴,,,X的分布列如下表:X012P20、(1)(2)【解析】(1)由條件因式分解可得,從而得到,即可得出答案.(2)由(1)可得,由錯位相減法求和得到,由題意即即對恒成立,分析數(shù)列的單調(diào)性,得出答案.【小問1詳解】由,得∵∴∴∴數(shù)列是公比為2的等比數(shù)列.∵,∴.【小問2詳解】由(1)知,∴∴①∴②①-②得∴∴由對恒成立得對恒成立即對恒成立,又是遞減數(shù)列∴時得到最大值∴,即∴的取值范圍是.21、證明見解析【解析】(1)連接,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;(2)連接,,先由線面平行的判定定理,得到平面,再由(1)的結(jié)果,結(jié)合面面平行的判定定理,即可證明結(jié)論成立.【詳解】(1)如圖,連接.∵四邊形是正方形,是的中點,∴是的中點.又∵是的中點,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論