版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆安徽省肥東第二中學高二上數(shù)學期末預測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線一條漸近線被圓所截得的弦長為,則雙曲線的離心率是()A. B.C. D.2.已知三維數(shù)組,,且,則實數(shù)()A.-2 B.-9C. D.23.已知點P是圓上一點,則點P到直線的距離的最大值為()A.2 B.C. D.4.已知,則下列不等式一定成立的是()A B.C. D.5.魏晉時期數(shù)學家劉徽首創(chuàng)割圓術,他在《九章算術》方田章圓田術中指出:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣.”這是注述中所用的割圓術是一種無限與有限的轉化過程,比如在正數(shù)中的“”代表無限次重復,設,則可以利用方程求得,類似地可得到正數(shù)()A.2 B.3C. D.6.設數(shù)列的前項和為,且,則()A. B.C. D.7.命題;命題.則A.“或”為假 B.“且”為真C.真假 D.假真8.已知對稱軸為坐標軸的雙曲線的兩漸近線方程為,若雙曲線上有一點,使,則雙曲線的焦點()A.在軸上 B.在軸上C.當時在軸上 D.當時在軸上9.已知點是橢圓上的一點,點,則的最小值為A. B.C. D.10.若,則()A. B.C. D.11.如圖,是邊長為4的等邊三角形的中位線,將沿折起,使得點A與P重合,平面平面,則四棱錐外接球的表面積是()A. B.C. D.12.數(shù)列是等比數(shù)列,是其前n項之積,若,則的值是()A.1024 B.256C.2 D.512二、填空題:本題共4小題,每小題5分,共20分。13.已知圓的圓心與點關于直線對稱,直線與圓相交于、兩點,且,則圓的方程為_________14.命題,恒成立是假命題,則實數(shù)a取值范圍是________________15.已知函數(shù),若在上是增函數(shù),則實數(shù)的取值范圍是________16.寫出一個漸近線的傾斜角為且焦點在y軸上的雙曲線標準方程___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知A,B兩地相距200km,某船從A地逆水到B地,水速為8km/h,船在靜水中的速度為vkm/h(v>8).若船每小時的燃料費與其在靜水中速度的平方成正比,比例系數(shù)為k,當v=12km/h,每小時的燃料費為720元(1)求比例系數(shù)k(2)當時,為了使全程燃料費最省,船的實際前進速度應為多少?(3)當(x為大于8的常數(shù))時,為了使全程燃料費最省,船的實際前進速度應為多少?18.(12分)已知橢圓的上、下頂點分別為A,B,離心率為,橢圓C上的點與其右焦點F的最短距離為.(1)求橢圓C的標準方程;(2)若直線與橢圓C交于P,Q兩點,直線PA與QB的斜率分別為,,且,那么直線l是否過定點,若過定點,求出該定點坐標;否則,請說明理由.19.(12分)已知數(shù)列的前n項和為,且.(1)求的通項公式;.(2)求數(shù)列的前n項和.20.(12分)已知是拋物線的焦點,直線交拋物線于、兩點.(1)若直線過點且,求;(2)若平分線段,求直線的方程.21.(12分)一款小游戲的規(guī)則如下:每盤游戲都需拋擲骰子三次,出現(xiàn)一次或兩次“6點”獲得15分,出現(xiàn)三次“6點”獲得120分,沒有出現(xiàn)“6點”則扣除12分(即獲得-12分)(Ⅰ)設每盤游戲中出現(xiàn)“6點”的次數(shù)為X,求X的分布列;(Ⅱ)玩兩盤游戲,求兩盤中至少有一盤獲得15分概率;(Ⅲ)玩過這款游戲的許多人發(fā)現(xiàn),若干盤游戲后,與最初的分數(shù)相比,分數(shù)沒有增加反而減少了.請運用概率統(tǒng)計的相關知識分析解釋上述現(xiàn)象22.(10分)設函數(shù),其中是自然對數(shù)的底數(shù),.(1)若,求的最小值;(2)若,證明:恒成立.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)(為弦長,為圓半徑,為圓心到直線的距離),求解出的關系式,結合求解出離心率的值.【詳解】取的一條漸近線,因為(為弦長,為圓半徑,為圓心到直線的距離),其中,所以,所以,所以,所以,所以,故選:A.【點睛】關鍵點點睛:解答本題的關鍵是利用幾何法表示出圓的半徑、圓心到直線的距離、半弦長之間的關系.2、D【解析】由空間向量的數(shù)量積運算即可求解【詳解】∵,,,,,,且,∴,解得故選:D3、C【解析】求出圓心到直線的距離,由這個距離加上半徑即得【詳解】由圓,可得圓心坐標,半徑,則圓心C到直線的距離為,所以點P到直線l的距離的最大值為.故選:C4、B【解析】運用不等式的性質及舉反例的方法可求解.【詳解】對于A,如,滿足條件,但不成立,故A不正確;對于B,因為,所以,所以,故B正確;對于C,因為,所以,所以不成立,故C不正確;對于D,因為,所以,所以,故D不正確.故選:B5、A【解析】設,則,解方程可得結果.【詳解】設,則且,所以,所以,所以,所以或(舍).所以.故選:A【點睛】關鍵點點睛:設是解題關鍵.6、C【解析】利用,把代入中,即可求出答案.【詳解】當時,.當時,.故選:C.7、D【解析】命題:可能為0,不為0,假命題,命題:,為真命題,所以“或”為真命題,“且”為假命題.選D.8、B【解析】設出雙曲線的一般方程,利用題設不等式,令二者平方,整理求得的,進而可判斷出焦點的位置【詳解】漸近線方程為,,平方,兩邊除,,,雙曲線的焦點在軸上.故選B.【點睛】本題考查已知雙曲線的漸近線方程求雙曲線的方程,考查對雙曲線標準方程的理解與運用,求解時要注意焦點落在軸或軸的特點,考查學生分析問題和解決問題的能力9、D【解析】設,則,.所以當時,的最小值為.故選D.10、D【解析】設,計算出、的值,利用平方差公式可求得結果.【詳解】設由已知可得,,因此,.故選:D.11、A【解析】分別取的中點,易得,則點為四邊形的外接圓的圓心,則四棱錐外接球的球心在過點且垂直平面的直線上,設球心為,設外接球的半徑為,,利用勾股定理求得半徑,從而可得出答案.【詳解】解:分別取的中點,在等邊三角形中,,是中位線,則都是等邊三角形,所以,所以點為四邊形的外接圓的圓心,則四棱錐外接球的球心在過點且垂直平面的直線上,設球心為,由為的中點,所以,因為平面平面,且平面平面,平面,所以平面,則,設外接球半徑為,,,則,,所以,解得,所以,所以四棱錐外接球的表面積是.故選:A.第II卷12、D【解析】設數(shù)列的公比為q,由已知建立方程求得q,再利用等比數(shù)列的通項公式可求得答案.【詳解】解:因為數(shù)列是等比數(shù)列,是其前n項之積,,設數(shù)列的公比為q,所以,解得,所以,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用對稱條件求出圓心C的坐標,借助直線被圓所截弦長求出圓半徑即可寫出圓的方程.【詳解】設圓的圓心,依題意,,解得,即圓心,點C到直線的距離,因圓截直線所得弦AB長為6,于是得圓C的半徑所以圓的方程為:.故答案為:14、【解析】由命題為假命題可得命題為真命題,由此可求a范圍.【詳解】∵命題,恒成立是假命題,∴,,∴,,又函數(shù)在為減函數(shù),∴,∴,∴實數(shù)a的取值范圍是,故答案為:.15、【解析】根據(jù)函數(shù)在上是增函數(shù),分段函數(shù)在整個定義域內單調,則在每個函數(shù)內單調,注意銜接點的函數(shù)值.【詳解】解:因為函數(shù)在上是增函數(shù),所以在區(qū)間上是增函數(shù)且在區(qū)間上也是增函數(shù),對于函數(shù)在上是增函數(shù),則;①對于函數(shù),(1)當時,,外函數(shù)為定義域內的減函數(shù),內函數(shù)在上是增函數(shù),根據(jù)復合函數(shù)“同增異減”可得時函數(shù)在區(qū)間上是減函數(shù),不符合題意,故舍去,(2)當時,外函數(shù)為定義域內的增函數(shù),要使函數(shù)在區(qū)間上是增函數(shù),則內函數(shù)在上也是增函數(shù),且對數(shù)函數(shù)真數(shù)大于0,即在上也要恒成立,所以,又,所以,②又在上是增函數(shù)則在銜接點處函數(shù)值應滿足:,化簡得,③由①②③得,,所以實數(shù)的取值范圍是.故答案為:.【點睛】方法點睛:利用單調性求參數(shù)方法如下:(1)依據(jù)函數(shù)的圖象或單調性定義,確定函數(shù)的單調區(qū)間,與已知單調區(qū)間比較;(2)需注意若函數(shù)在區(qū)間上是單調的,則該函數(shù)在此區(qū)間的任意子集上也是單調的;(3)分段函數(shù)的單調性,除注意各段的單調性外,還要注意銜接點的取值16、(答案不唯一)【解析】根據(jù)已知條件寫出一個符合條件的方程即可.【詳解】如,焦點在y軸上,令,得漸近線方程為,其中的傾斜角為.故答案為:(答案不唯一).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)5(2)8km/h(3)答案見解析【解析】(1)列出關系式,根據(jù)當v=12km/h,每小時的燃料費為720元即可求解;(2)列出燃料費的函數(shù)解析式,利用導數(shù)求其最值即可;(3)討論x的范圍,結合(2)的結論可得答案.【小問1詳解】設每小時的燃料費為,則當v=12km/h,每小時的燃料費為720元,代入得.【小問2詳解】由(1)得.設全程燃料費為y,則(),所以,令,解得v=0(舍去)或v=16,所以當時,;當時,,所以當v=16時,y取得最小值,故為了使全程燃料費最省,船的實際前進速度應為8km/h【小問3詳解】由(2)得,若時,則y在區(qū)間上單調遞減,當v=x時,y取得最小值;若時,則y區(qū)間(8,16)上單調遞減,在區(qū)間上單調遞增,當v=16時,y取得最小值;綜上,當時,船的實際前進速度為8km/h,全程燃料費最省;當時,船的實際前進速度應為(x-8)km/h,全程燃料費最省18、(1)(2)恒過點【解析】(1)設為橢圓上的點,根據(jù)橢圓的性質得到,再根據(jù)的取值范圍,得到,再根據(jù)離心率求出、,最后根據(jù),求出,即可得解;(2)設、,表示出、,聯(lián)立直線與橢圓方程,消元列出韋達定理,由,即可得到,再根據(jù),即可得到,從而得到,再將、代入計算可得;【小問1詳解】解:設為橢圓上的點,為橢圓的右焦點,所以,因為,所以,又,所以、,因為,所以,所以橢圓方程為;【小問2詳解】解:設、,依題意可得、,所以、,聯(lián)立得,則即,所以、,因為,所以,即,由得,即,所以,即,,整理得,所以,即,即,解得或,當時直線過點,故舍去,所以,則直線恒過點;19、(1);(2).【解析】(1)根據(jù)給定條件結合當時,探求數(shù)列的性質即可計算作答.(2)由(1)求出,再利用錯位相減法計算作答.小問1詳解】依題意,當時,因為,則,當時,,解得,于是得數(shù)列是以1為首項,為公比的等比數(shù)列,則,所以的通項公式是.【小問2詳解】由(1)可知,,則,因此,兩式相減得:,于是得,所以數(shù)列的前n項和.20、(1);(2).【解析】(1)分析可知直線的方程為,將直線的方程與拋物線方程聯(lián)立,求出點的坐標,利用拋物線的定義可求得;(2)利用點差法可求得直線的斜率,利用點斜式可得出直線的方程.【小問1詳解】解:設點、,則直線的傾斜角為,易知點,直線的方程為,聯(lián)立,可得,由題意可知,則,,因此,.【小問2詳解】解:設、,若軸,則線段的中點在軸上,不合乎題意,所以直線的斜率存在,因為、在拋物線上,則,兩式相減得,又因為為的中點,則,所以,直線的斜率為,此時,直線的方程為,即.21、(Ⅰ)分布列見解析(Ⅱ)(Ⅲ)見解析【解析】(Ⅰ)先得到可能的取值為,,,,根據(jù)每次拋擲骰子,出現(xiàn)“6點”的概率為,得到每種取值的概率,得到分布列;(Ⅱ)計算出每盤游戲沒有獲得15分的概率,從而得到兩盤中至少有一盤獲得15分的概率;(Ⅲ)設每盤游戲得分為,得到的分布列和數(shù)學期望,從而得到結論.【詳解】解:(Ⅰ)可能的取值為,,,.每次拋擲骰子,出現(xiàn)“6點”的概率為.,,,,所以X的分布列為:0123(Ⅱ)設每盤游戲沒有得到15分為事件,則.設“兩盤游戲中至少有一次獲得15分”為事件,則因此,玩兩盤游戲至少有一次獲得15分的概率為.(Ⅲ)設每盤游戲得分為.由(Ⅰ)知,的分布列為:Y-1215120P的數(shù)學期望為.這表明,獲得分數(shù)的期望為負因此,多次游戲之后分數(shù)減少的可能性更大【點睛】本題考查求隨機變量的分布列和數(shù)學期望,求互斥事件的概率,屬于中檔題.22
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能網(wǎng)聯(lián)汽車的關鍵技術分析
- 2025年日喀則貨運考試
- 2025年達州經(jīng)營性道路客貨運輸駕駛員從業(yè)資格考試
- 2025的承包合同書
- 上?,F(xiàn)代化工職業(yè)學院《衛(wèi)生統(tǒng)計學C》2023-2024學年第一學期期末試卷
- 2025工程建設車輛租賃合同書
- 大學中期報告范文模板
- 機器學習在環(huán)境監(jiān)測中的使用
- 上海師范大學天華學院《微積分ⅠB》2023-2024學年第一學期期末試卷
- 家委會整改報告范文
- 2024年度石料供應框架協(xié)議
- 2024年度技術開發(fā)合同違約處理3篇
- 辦公家具無償租賃合同
- 臥式橢圓封頭儲罐液位體積對照表
- 《家庭安全用電培訓》課件
- 人教版數(shù)學一年級上冊 前后上下左右專項練習題(試題)
- 中醫(yī)婦科疾病的治療(完美版)課件
- 《預防未成年人犯罪》課件(圖文)
- (小學組)全國版圖知識競賽考試題含答案
- 創(chuàng)新實踐(理論)學習通超星期末考試答案章節(jié)答案2024年
- TCHAS 10-2-1-2023 中國醫(yī)院質量安全管理 第2-1部分:患者服務患者安全目標
評論
0/150
提交評論