江西省宜春市宜豐縣二中2025屆高二數(shù)學(xué)第一學(xué)期期末達標檢測試題含解析_第1頁
江西省宜春市宜豐縣二中2025屆高二數(shù)學(xué)第一學(xué)期期末達標檢測試題含解析_第2頁
江西省宜春市宜豐縣二中2025屆高二數(shù)學(xué)第一學(xué)期期末達標檢測試題含解析_第3頁
江西省宜春市宜豐縣二中2025屆高二數(shù)學(xué)第一學(xué)期期末達標檢測試題含解析_第4頁
江西省宜春市宜豐縣二中2025屆高二數(shù)學(xué)第一學(xué)期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西省宜春市宜豐縣二中2025屆高二數(shù)學(xué)第一學(xué)期期末達標檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)為橢圓上一點,,為左、右焦點,且,則()A.為銳角三角形 B.為鈍角三角形C.為直角三角形 D.,,三點構(gòu)不成三角形2.已知拋物線的焦點為,過點的直線交拋物線于,兩點,則的取值范圍是()A. B.C. D.3.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.已知空間向量,,,下列命題中正確的個數(shù)是()①若與共線,與共線,則與共線;②若,,非零且共面,則它們所在的直線共面;⑧若,,不共面,那么對任意一個空間向量,存在唯一有序?qū)崝?shù)組,使得;④若,不共線,向量,則可以構(gòu)成空間的一個基底.A.0 B.1C.2 D.35.《周髀算經(jīng)》有這樣一個問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個節(jié)氣日影長減等寸,冬至、立春、春分日影之和為三丈一尺五寸,前九個節(jié)氣日影之和為八丈五尺五寸(注:一丈等于十尺,一尺等于十寸),問立夏日影長為()A.一尺五寸 B.二尺五寸C.三尺五寸 D.四尺五寸6.“”是“直線和直線垂直”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件7.已知點的坐標為(5,2),F(xiàn)為拋物線的焦點,若點在拋物線上移動,當(dāng)取得最小值時,則點的坐標是A.(1,) B.C. D.8.已知數(shù)列滿足:且,則此數(shù)列的前20項的和為()A.621 B.622C.1133 D.11349.在平面直角坐標系中,已知的頂點,,其內(nèi)切圓圓心在直線上,則頂點C的軌跡方程為()A. B.C. D.10.設(shè)橢圓C:的左、右焦點分別為、,P是C上的點,⊥,∠=,則C的離心率為A. B.C. D.11.已知平面的一個法向量為,則x軸與平面所成角的大小為()A. B.C. D.12.若方程表示圓,則實數(shù)的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為坐標原點,等軸雙曲線的右焦點為,點在雙曲線上,由向雙曲線的漸近線作垂線,垂足分別為、,則四邊形的面積為______.14.關(guān)于曲線,則以下結(jié)論正確的個數(shù)有______個①曲線C關(guān)于原點對稱;②曲線C中,;③曲線C是不封閉圖形,且它與圓無公共點;④曲線C與曲線有4個交點,這4點構(gòu)成正方形15.已知函數(shù)的圖像在點處的切線方程是,則=______16.如圖,在五面體中,//,,,四邊形為平行四邊形,平面,,則直線到平面距離為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線與有相同的漸近線,且經(jīng)過點.(1)求雙曲線的方程;(2)已知直線與雙曲線交于不同的兩點,且線段的中點在圓上,求實數(shù)的值.18.(12分)隨著生活條件的改善,人們健身意識的增強,健身器械比較暢銷,某商家為了解某種健身器械如何定價可以獲得最大利潤,現(xiàn)對這種健身器械進行試銷售.統(tǒng)計后得到其單價x(單位:百元)與銷量y(單位:個)的相關(guān)數(shù)據(jù)如下表:單價x(百元/個)3035404550日銷售量y(個)1401301109080(1)已知銷量y與單價x具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;(2)若每個健身器械的成本為25百元,試銷售結(jié)束后,請利用(1)中所求的線性回歸方程確定單價為多少百元時,銷售利潤最大?(結(jié)果保留到整數(shù)),附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為.參考數(shù)據(jù):.19.(12分)已知是數(shù)列的前n項和,且.(1)求數(shù)列的通項公式;(2)若,求的前n項和.20.(12分)求下列函數(shù)的導(dǎo)數(shù):(1);(2).21.(12分)某種機械設(shè)備隨著使用年限的增加,它的使用功能逐漸減退,使用價值逐年減少,通常把它使用價值逐年減少的“量”換算成費用,稱之為“失效費”.某種機械設(shè)備的使用年限(單位:年)與失效費(單位:萬元)的統(tǒng)計數(shù)據(jù)如下表所示:使用年限(單位:年)1234567失效費(單位:萬元)2.903.303.604.404.805.205.90(1)由上表數(shù)據(jù)可知,可用線性回歸模型擬合與的關(guān)系.請用相關(guān)系數(shù)加以說明;(精確到0.01)(2)求出關(guān)于的線性回歸方程,并估算該種機械設(shè)備使用8年的失效費參考公式:相關(guān)系數(shù)線性回歸方程中斜率和截距最小二乘估計計算公式:,參考數(shù)據(jù):,,22.(10分)如圖1,在邊長為2的菱形ABCD中,∠BAD=60°,將△BCD沿對角線BD折起到△BDC′的位置,如圖2所示,并使得平面BDC′⊥平面ABD,E是BD的中點,F(xiàn)A⊥平面ABD,且FA=.圖1圖2(1)求平面FBC′與平面FBA夾角的余弦值;(2)在線段AD上是否存在一點M,使得⊥平面?若存在,求的值;若不存在,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)橢圓方程求出,然后結(jié)合橢圓定義和已知條件求出并求出,進而判斷答案.【詳解】由題意可知,,由橢圓的定義可知,而,聯(lián)立方程解得,且,則6+2=8,即不構(gòu)成三角形.故選:D.2、B【解析】當(dāng)直線斜率存在時,設(shè)直線方程,聯(lián)立方程組,結(jié)合根與系數(shù)關(guān)系可得,進而求得取值范圍,當(dāng)斜率不存在是,可得,兩點坐標,進而可得的值.【詳解】當(dāng)直線斜率存在時,設(shè)直線方程為,,,聯(lián)立方程,得,恒成立,則,,,,,所以,當(dāng)直線斜率不存在時,直線方程為,所以,,,綜上所述:,故選:B.3、C【解析】利用函數(shù)在上單調(diào)遞減即可求解.【詳解】解:因為函數(shù)在上單調(diào)遞減,所以若,,則;反之若,,則.所以若,則“”是“”的充要條件,故選:C.4、B【解析】用向量共線或共面的基本定理即可判斷.【詳解】若與,與共線,,則不能判定,故①錯誤;若非零向量共面,則向量可以在一個與組成的平面平行的平面上,故②錯誤;不共面,意味著它們都是非零向量,可以作為一組基底,故③正確;,∴與共面,故不能組成一個基底,故④錯誤;故選:C.5、D【解析】結(jié)合等差數(shù)列知識求得正確答案.【詳解】設(shè)冬至日影長,公差為,則,所以立夏日影長丈,即四尺五寸.故選:D6、A【解析】根據(jù)直線垂直求出值即可得答案.【詳解】解:若直線和直線垂直,則,解得或,則“”是“直線和直線垂直”的充分非必要條件.故選:A.7、D【解析】過作準線的垂線,垂足為,則,當(dāng)且僅當(dāng)三點共線時等號成立,此時,故,所以,選D8、C【解析】這個數(shù)列的奇數(shù)項是公差為2的等差數(shù)列,偶數(shù)項是公比為2的等比數(shù)列,只要分開來計算即可.【詳解】由于,所以當(dāng)n為奇數(shù)時,是等差數(shù)列,即:共10項,和為;,共10項,其和為;∴該數(shù)列前20項的和;故選:C.9、A【解析】根據(jù)圖可得:為定值,利用根據(jù)雙曲線定義,所求軌跡是以、為焦點,實軸長為6的雙曲線的右支,從而寫出其方程即得【詳解】解:如圖設(shè)與圓切點分別為、、,則有,,,所以根據(jù)雙曲線定義,所求軌跡是以、為焦點,實軸長為4的雙曲線的右支(右頂點除外),即、,又,所以,所以方程為故選:A10、D【解析】詳解】由題意可設(shè)|PF2|=m,結(jié)合條件可知|PF1|=2m,|F1F2|=m,故離心率e=選D.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標的范圍等.11、C【解析】依題意可得軸的方向向量可以為,再利用空間向量法求出線面角的正弦值,即可得解;【詳解】解:依題意軸的方向向量可以為,設(shè)x軸與平面所成角為,則,因為,所以,故選:C12、D【解析】將方程化為標準式即可.【詳解】方程化為標準式得,則.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】求出雙曲線的方程,可求得雙曲線的兩條漸近線方程,分析可知四邊形為矩形,然后利用點到直線的距離公式以及矩形的面積公式可求得結(jié)果.【詳解】因為雙曲線為等軸雙曲線,則,,可得,所以,雙曲線的方程為,雙曲線的漸近線方程為,則雙曲線的兩條漸近線互相垂直,則,,,所以,四邊形為矩形,設(shè)點,則,不妨設(shè)點為直線上的點,則,,所以,.故答案為:.14、2【解析】根據(jù)曲線的方程,以及曲線的對稱性、范圍,結(jié)合每個選項進行逐一分析,即可判斷.【詳解】①將方程中的分別換為,方程不變,故該曲線關(guān)于原點對稱,故正確;②因為,解得或,故,同理可得:,故錯誤;③根據(jù)②可知,該曲線不是封閉圖形;聯(lián)立與,可得:,將其視作關(guān)于的一元二次方程,故,所以方程無根,故曲線與沒有交點;綜上所述,③正確;④假設(shè)曲線C與曲線有4個交點且交點構(gòu)成正方形,根據(jù)對稱性,第一象限的交點必在上,聯(lián)立與可得:,故交點為,而此點坐標不滿足,所以這樣的正方形不存在,故錯誤;綜上所述,正確的是①③.故答案為:.【點睛】本題考察曲線與方程中利用曲線方程研究曲線性質(zhì),處理問題的關(guān)鍵是把握由曲線方程如何研究對稱性以及范圍問題,屬困難題.15、3【解析】根據(jù)導(dǎo)數(shù)幾何意義,可得的值,根據(jù)點M在切線上,可求得的值,即可得答案.【詳解】由導(dǎo)數(shù)的幾何意義可得,,又在切線上,所以,則=3,故答案為:3【點睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用,考查分析理解的能力,屬基礎(chǔ)題.16、【解析】利用等價轉(zhuǎn)化的思想轉(zhuǎn)化為點到面的距離,作,利用線面垂直的判定定理證明平面,然后計算使用等面積法,可得結(jié)果.【詳解】作如圖由//,平面,平面所以//平面所以直線到平面距離等價于點到平面距離又平面,平面所以,又,則平面,,所以平面平面,所以又平面,所以平面所以點到平面距離為由,所以又,所以在中,又故答案為:【點睛】本題考查線面垂直的綜合應(yīng)用以及等面積法求高,重點在于使用等價轉(zhuǎn)換的思想,考驗理解能力,分析問題的能力,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)所求雙曲線與有共同的漸近線可設(shè)出所求雙曲線方程為,在根據(jù)點在雙曲線上,代入雙曲線方程中即可求解.(2)聯(lián)立直線與雙曲線的方程,得關(guān)于的一元二次方程,利用韋達定理得出的關(guān)系,再根據(jù)中點坐標公式求出線段的中點的坐標,代入圓方程即可求解.【小問1詳解】由題意,設(shè)雙曲線的方程為,則又因為雙曲線過點,,所以雙曲線的方程為:【小問2詳解】由,消去整理,得,設(shè),則因為直線與雙曲線交于不同的兩點,所以,解得.,所以則中點坐標為,代入圓得,解得.實數(shù)的值為18、(1);(2)確定單價為50百元時,銷售利潤最大.【解析】(1)根據(jù)參考公式和數(shù)據(jù)求出,進而求出線性回歸方程;(2)設(shè)出定價,結(jié)合(1)求出利潤,進而通過二次函數(shù)的性質(zhì)求得答案.【小問1詳解】由題意,,則,,結(jié)合參考數(shù)據(jù)可得,,所以線性回歸方程為.【小問2詳解】設(shè)定價為x百元,利潤為,則,由題意,則(百元)時,最大.故確定單價為50百元時,銷售利潤最大.19、(1)(2)【解析】(1)當(dāng)時,化簡得到,進而得到數(shù)列的通項公式;(2)由(1)得到,結(jié)合裂項法,即可求解.【小問1詳解】解:由題意,數(shù)列的前n項和,且,當(dāng)時,,當(dāng)時,,滿足上式,所以數(shù)列的通項公式為.【小問2詳解】解:由,可得,所以.20、(1);(2).【解析】(1)根據(jù)導(dǎo)數(shù)的加法運算法則,結(jié)合常見函數(shù)的導(dǎo)數(shù)進行求解即可;(2)根據(jù)導(dǎo)數(shù)的加法和乘法的運算法則,結(jié)合常見函數(shù)的導(dǎo)數(shù)進行求解即可.【小問1詳解】;【小問2詳解】.21、(1)答案見解析;(2);失效費為6.3萬元【解析】(1)根據(jù)相關(guān)系數(shù)公式計算出相關(guān)系數(shù)可得結(jié)果;(2)根據(jù)公式求出和可得關(guān)于的線性回歸方程,再代入可求出結(jié)果.【詳解】(1)由題意,知,,∴結(jié)合參考數(shù)據(jù)知:因為與的相關(guān)系數(shù)近似為0.99,所以與的線性相關(guān)程度相當(dāng)大,從而可以用線性回歸模型擬合與的關(guān)系(2)∵,∴∴關(guān)于的線性回歸方程為,將代入線性回歸方程得萬元,∴估算該種機械設(shè)備使用8年的失效費為6.3萬元22、(1)(2)不存在,理由見解析【解析】(1)利用垂直關(guān)系,以點為原點,建立空間直角坐標系,分別求平面和平面的法向量和,利用公式,即可求解;(2)若滿足條件,,利用向量的坐標表示,判斷是否存在點滿足.【小問1詳解】∵,E為BD的中點∴CE⊥BD,又∵平面⊥平面ABD,平面平面,⊥平面,∴⊥平面ABD,如圖以E原點,分別以EB、AE、EC′所在直線為x軸、y軸、z軸建立空間直角坐標系,則B(1,0,0),A(0,-,0),D(-1,0,0),F(xiàn)(0,-,2),(0,0,),∴=(-1,-,2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論