版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省淮北市一中2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某中學(xué)為了解高三男生的體能情況,通過隨機抽樣,獲得了200名男生的100米體能測試成績(單位:秒),將數(shù)據(jù)按照,,…,分成9組,制成了如圖所示的頻率分布直方圖.規(guī)定成績低于13秒為優(yōu),成績高于14.8秒為不達標(biāo).由直方圖推斷,下列選項錯誤的是()A.直方圖中a的值為0.40B.由直方圖估計本校高三男生100米體能測試成績的眾數(shù)為13.75秒C.由直方圖估計本校高三男生100米體能測試成績?yōu)閮?yōu)的人數(shù)為54D.由直方圖估計本校高三男生100米體能測試成績?yōu)椴贿_標(biāo)的人數(shù)為182.已知向量,且與互相垂直,則k=()A. B.C. D.3.已知橢圓:的左、右焦點分別為,,點P是橢圓上的動點,,,則的最小值為()A. B.C D.4.在空間直角坐標(biāo)系中,,,平面的一個法向量為,則平面與平面夾角的正弦值為()A. B.C. D.5.直線平分圓的周長,過點作圓的一條切線,切點為,則()A.5 B.C.3 D.6.已知向量,,則下列向量中,使能構(gòu)成空間的一個基底的向量是()A. B.C. D.7.拋物線上有兩個點,焦點,已知,則線段的中點到軸的距離是()A.1 B.C.2 D.8.焦點為的拋物線標(biāo)準(zhǔn)方程是()A. B.C. D.9.已知等差數(shù)列的前項和為,,公差,.若取得最大值,則的值為()A.6或7 B.7或8C.8或9 D.9或1010.已知命題:拋物線的焦點坐標(biāo)為;命題:等軸雙曲線的離心率為,則下列命題是真命題的是()A. B.C. D.11.中國農(nóng)歷的二十四節(jié)氣是中華民族的智慧與傳統(tǒng)文化的結(jié)晶,二十四節(jié)氣歌是以春、夏、秋、冬開始的四句詩.在國際氣象界,二十四節(jié)氣被譽為“中國的第五大發(fā)明”.2016年11月30日,二十四節(jié)氣被正式列入聯(lián)合國教科文組織人類非物質(zhì)文化遺產(chǎn)代表作名錄.某小學(xué)三年級共有學(xué)生600名,隨機抽查100名學(xué)生并提問二十四節(jié)氣歌,只能說出一句的有45人,能說出兩句及以上的有38人,據(jù)此估計該校三年級的600名學(xué)生中,對二十四節(jié)氣歌一句也說不出的有()A.17人 B.83人C.102人 D.115人12.求點關(guān)于x軸的對稱點的坐標(biāo)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若拋物線的焦點與橢圓的右焦點重合,則實數(shù)m的值為______.14.如圖,在四棱錐中,是邊長為4的等邊三角形,四邊形ABCD是等腰梯形,,,,若四棱錐的體積為24,則四棱錐外接球的表面積是___________.15.已知空間向量,則向量在坐標(biāo)平面上的投影向量是__________16.若兩條直線與互相垂直,則a的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點A(1,2)在拋物線C∶上,過點A作兩條直線分別交拋物線于點D,E,直線AD,AE的斜率分別為kAD,kAE,若直線DE過點P(-1,-2)(1)求拋物線C的方程;(2)求直線AD,AE的斜率之積.18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若,當(dāng)時,恒成立,求實數(shù)的取值范圍.19.(12分)已知雙曲線C:的離心率為,過點作垂直于x軸的直線截雙曲線C所得弦長為(1)求雙曲線C的方程;(2)直線()與該雙曲線C交于不同的兩點A,B,且A,B兩點都在以點為圓心的同一圓上,求m的取值范圍20.(12分)已知拋物線C的方程是.(1)求C的焦點坐標(biāo)和準(zhǔn)線方程;(2)直線l過拋物線C的焦點且傾斜角為,與拋物線C的交點為A,B,求的長度.21.(12分)已知數(shù)列是公差不為0的等差數(shù)列,首項,且成等比數(shù)列(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列滿足,求數(shù)列的前n項和22.(10分)已知橢圓的左、右焦點分別是,,離心率為,過且垂直于x軸的直線被橢圓C截得的線段長為1(1)求橢圓C方程;(2)設(shè)點P在直線上,過點P的兩條直線分別交曲線C于A,B兩點和M,N兩點,且,求直線AB的斜率與直線MN的斜率之和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)頻率之和為求得,結(jié)合眾數(shù)、頻率等知識對選項進行分析,從而確定正確答案.【詳解】,解得,A選項正確.眾數(shù)為,B選項正確.成績低于秒的頻率為,人數(shù)為,所以C選項正確.成績高于的頻率為,人數(shù)為人,D選項錯誤.故選:D2、C【解析】利用垂直的坐標(biāo)表示列方程求解即可.【詳解】由與互相垂直得,解得故選:C.3、A【解析】由橢圓的定義可得;利用基本不等式,若,則,當(dāng)且僅當(dāng)時取等號.【詳解】根據(jù)橢圓的定義可知,,即,因為,,所以,當(dāng)且僅當(dāng),時等號成立.故選:A4、A【解析】根據(jù)給定條件求出平面的法向量,再借助空間向量夾角公式即可計算作答.【詳解】設(shè)平面的法向量為,則,令,得,令平面與平面夾角為,則,,所以平面與平面夾角的正弦值為.故選:A5、B【解析】根據(jù)圓的性質(zhì),結(jié)合圓的切線的性質(zhì)進行求解即可.【詳解】由,所以該圓的圓心為,半徑為,因為直線平分圓的周長,所以圓心在直線上,故,因此,,所以有,所以,故選:B6、D【解析】根據(jù)向量共面基本定理只需無解即可滿足構(gòu)成空間向量基底,據(jù)此檢驗各選項即可得解.【詳解】因為,所以A中的向量不能與,構(gòu)成基底;因為,所以B中的向量不能與,構(gòu)成基底;對于,設(shè),則,解得,,所以,故,,為共面向量,所以C中的向量不能與,構(gòu)成基底;對于,設(shè),則,此方程組無解,所以,,不共面,故D中的向量與,可以構(gòu)成基底.故選:D7、B【解析】利用拋物線的定義,將拋物線上的點到焦點的距離轉(zhuǎn)化為點到準(zhǔn)線的距離,即可求出線段中點的橫坐標(biāo),即得到答案.【詳解】由已知可得拋物線的準(zhǔn)線方程為,設(shè)點的坐標(biāo)分別為和,由拋物線的定義得,即,線段中點的橫坐標(biāo)為,故線段的中點到軸的距離是.故選:.8、D【解析】設(shè)拋物線的方程為,根據(jù)題意,得到,即可求解.【詳解】由題意,設(shè)拋物線的方程為,因為拋物線的焦點為,可得,解得,所以拋物線的方程為.故選:D.9、B【解析】根據(jù)題意可知等差數(shù)列是,單調(diào)遞減數(shù)列,其中,由此可知,據(jù)此即可求出結(jié)果.【詳解】在等差數(shù)列中,所以,所以,即,又等差數(shù)列中,公差,所以等差數(shù)列是單調(diào)遞減數(shù)列,所以,所以等差數(shù)列的前項和為取得最大值,則的值為7或8.故選:B.10、D【解析】求出的焦點坐標(biāo),及等軸雙曲線的離心率,判斷出為假命題,q為真命題,進而判斷出答案.【詳解】拋物線的焦點坐標(biāo)為,故命題為假命題;命題:等軸雙曲線中,,所以離心率為,故命題q為真命題,所以為真命題,其他選項均為假命題.故選:D11、C【解析】根據(jù)頻率計算出正確答案.【詳解】一句也說不出的學(xué)生頻率為,所以估計名學(xué)生中,一句也說不出的有人.故選:C12、D【解析】根據(jù)點關(guān)于坐標(biāo)軸的對稱點特征,直接寫出即可.【詳解】A點關(guān)于x軸對稱點,橫坐標(biāo)不變,縱坐標(biāo)與豎坐標(biāo)為原坐標(biāo)的相反數(shù),故點的坐標(biāo)為,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分別求出橢圓和拋物線的焦點坐標(biāo)即可出值.【詳解】由橢圓方程可知,,,則,即橢圓的右焦點的坐標(biāo)為,拋物線的焦點坐標(biāo)為,∵拋物線的焦點與橢圓的右焦點重合,∴,即,故答案為:.14、##【解析】根據(jù)球的截面圓圓心與球心的連線垂直截面可確定垂直平面ABCD,構(gòu)造直角三角形求解球的半徑即可得解.【詳解】如圖,分別取BC,AD的中點,E,連接PE,,,.因為是邊長為4的等邊三角形,所以.因為四邊形ABCD是等腰梯形,,,,所以,.因為四棱錐的體積為24,所以,所以.因為E是AD的中點,所以.因為,所以平面ABCD.因為,所以四邊形ABCD外接圓的圓心為,半徑.設(shè)四棱錐外接球的球心為O,連接,OP,OB,過點О作,垂足為F.易證四邊形是矩形,則,.設(shè)四棱錐外接球的半徑為R,則,即,解得,故四棱錐外接球的表面積是.故答案為:15、【解析】根據(jù)投影向量的知識求得正確答案.【詳解】空間向量在坐標(biāo)平面上的投影向量是.故答案為:16、4【解析】兩直線斜率均存在時,兩直線垂直,斜率相乘等于-1,據(jù)此即可求解.【詳解】由題可知,.故答案為:4.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)代入點即可求得拋物線方程;(2)聯(lián)立方程后利用韋達定理求出,,,,然后代入即可求得斜率的積.【小問1詳解】解:點A(1,2)在拋物線C∶上故【小問2詳解】設(shè)直線方程為:聯(lián)立方程,整理得:由題意及韋達定理可得:,18、(1)答案見解析;(2).【解析】(1)求得,分、兩種情況討論,分析導(dǎo)數(shù)的符號變化,由此可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)利用參變量分離法可得出對任意的恒成立,構(gòu)造函數(shù),其中,利用導(dǎo)數(shù)求出函數(shù)在上的最小值,由此可求得實數(shù)的取值范圍.【小問1詳解】解:函數(shù)的定義域為,.因為,由,可得.①當(dāng)時,由可得,由可得.此時,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;②當(dāng)時,由可得,由可得,此時,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.綜上所述,當(dāng)時,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;當(dāng)時,函數(shù)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為【小問2詳解】解:當(dāng)且時,由,可得,令,其中,.當(dāng)時,,此時函數(shù)單調(diào)遞減,當(dāng)時,,此時函數(shù)單調(diào)遞增,則,.19、(1)(2)或【解析】(1)利用雙曲線離心率、點在雙曲線上及得到關(guān)于、、的方程組,進而求出雙曲線的標(biāo)準(zhǔn)方程;(2)聯(lián)立直線和雙曲線的方程,得到關(guān)于的一元二次方程,利用直線和雙曲線的位置關(guān)系、根與系數(shù)的關(guān)系得到兩個交點坐標(biāo)間的關(guān)系,利用A,B兩點都在以點為圓心的同一圓上得到,再利用向量的數(shù)量積為0得到、的關(guān)系,進而消去得到的不等式進行求解.【小問1詳解】解:因為過點作垂直于x軸的直線截雙曲線C所得弦長為,所以點在雙曲線上,由題意,得,解得,,,即雙曲線的標(biāo)準(zhǔn)方程為.【小問2詳解】解:聯(lián)立,得,因為直線與該雙曲線C交于不同的兩點,所以且,即且,設(shè),,的中點,則,,因為A,B兩點都在以點為圓心的同一圓上,所以,即,因為,,所以,即,將代入,得,解得或,即m的取值范圍為或.20、(1)焦點為,準(zhǔn)線方程:(2)【解析】(1)拋物線的標(biāo)準(zhǔn)方程為,焦點在軸上,開口向右,,即可求出拋物線的焦點坐標(biāo)和準(zhǔn)線方程;(2)現(xiàn)根據(jù)題意給出直線的方程,代入拋物線,求出兩交點的橫坐標(biāo)的和,然后利用焦半徑公式求解即可【小問1詳解】(1)拋物線的標(biāo)準(zhǔn)方程是,焦點在軸上,開口向右,,∴,∴焦點為,準(zhǔn)線方程:.【小問2詳解】∵直線l過拋物線C的焦點且傾斜角為,,∴直線L的方程為,代入拋物線化簡得,設(shè),則,所以故所求的弦長為1221、(1);(2)【解析】(1)設(shè)數(shù)列的公差為d,根據(jù)等比中項的概念即可求出公差,再根據(jù)等差數(shù)列的通項公式即可求出答案;(2)由(1)得,再根據(jù)分組求和法即可求出答案【詳解】解:(1)設(shè)數(shù)列的公差為d,由已知得,,即,解得或,又,∴,∴;(2)由(1)得,【點睛】本題主要考查等差數(shù)列的通項公式,考查數(shù)列的分組求和法,考查計算能力,屬于基礎(chǔ)題22、(1)(2)0【解析】(1)由條件得和,再結(jié)合可求解;(2)設(shè)直線AB的方程為:,與橢圓聯(lián)立,得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧石化職業(yè)技術(shù)學(xué)院《審計流程實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 昆明幼兒師范高等專科學(xué)?!渡鐣茖W(xué)名著》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西傳媒職業(yè)學(xué)院《機械制造技術(shù)基礎(chǔ)實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 吉林師范大學(xué)博達學(xué)院《課外讀寫實踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南商務(wù)職業(yè)技術(shù)學(xué)院《電子線路CAD設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南財政經(jīng)濟學(xué)院《中國民族民間舞(一)》2023-2024學(xué)年第一學(xué)期期末試卷
- 黑龍江三江美術(shù)職業(yè)學(xué)院《中文工具書》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶工業(yè)職業(yè)技術(shù)學(xué)院《經(jīng)濟地理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江科技學(xué)院《材料綜合實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 年產(chǎn)2萬噸鹽酸二甲雙胍原料藥項目可行性研究報告模板-立項備案
- 2023年全國統(tǒng)一高考數(shù)學(xué)甲卷【文科+理科】試題及答案解析
- 社區(qū)團支部工作計劃
- 廢品處置招標(biāo)書
- GA/T 1280-2024銀行自助設(shè)備安全性規(guī)范
- 數(shù)據(jù)標(biāo)注基地項目實施方案
- 靜脈治療??谱o士競聘
- 2024年第一季度醫(yī)療安全(不良)事件分析報告
- 中醫(yī)課件英語教學(xué)課件
- 《哪吒鬧海》電影賞析
- 2024年初一英語閱讀理解專項練習(xí)及答案
- 《建筑工程設(shè)計文件編制深度規(guī)定》(2022年版)
評論
0/150
提交評論