2025屆北京師大第二附中高二上數(shù)學期末質(zhì)量檢測試題含解析_第1頁
2025屆北京師大第二附中高二上數(shù)學期末質(zhì)量檢測試題含解析_第2頁
2025屆北京師大第二附中高二上數(shù)學期末質(zhì)量檢測試題含解析_第3頁
2025屆北京師大第二附中高二上數(shù)學期末質(zhì)量檢測試題含解析_第4頁
2025屆北京師大第二附中高二上數(shù)學期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆北京師大第二附中高二上數(shù)學期末質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列為等比數(shù)列,若,則的值為()A.-4 B.4C.-2 D.22.國際冬奧會和殘奧會兩個奧運會將于2022年在北京召開,這是我國在2008年成功舉辦夏季奧運會之后的又一奧運盛事.某電視臺計劃在奧運會期間某段時間連續(xù)播放5個廣告,其中3個不同的商業(yè)廣告和2個不同的奧運宣傳廣告,要求最后播放的必須是奧運宣傳廣告,且2個奧運宣傳廣告不能相鄰播放,則不同的播放方式有()A.120種 B.48種C.36種 D.18種3.已知,為橢圓的左、右焦點,P為橢圓上一點,若,則P點的橫坐標為()A. B.C.4 D.94.已知拋物線的焦點為,過點且傾斜角為銳角的直線與交于、兩點,過線段的中點且垂直于的直線與的準線交于點,若,則的斜率為()A. B.C. D.5.已知雙曲線的虛軸長是實軸長的2倍,則實數(shù)的值是A. B.C. D.6.已知圓和圓恰有三條公共切線,則的最小值為()A.6 B.36C.10 D.7.已知向量,,且,則實數(shù)等于()A1 B.2C. D.8.已知四面體,所有棱長均為2,點E,F(xiàn)分別為棱AB,CD的中點,則()A.1 B.2C.-1 D.-29.已知拋物線的焦點為,拋物線上的兩點,均在第一象限,且,,,則直線的斜率為()A.1 B.C. D.10.已知,若,則()A. B.C. D.11.下列關(guān)系中,正確的是()A. B.C. D.12.設(shè),直線與直線平行,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.寫出一個與橢圓有公共焦點的橢圓方程__________14.給出下列命題:①若兩條不同的直線同時垂直于第三條直線,則這兩條直線互相平行;②若兩個不同的平面同時垂直于同一條直線,則這兩個平面互相平行;③若兩條不同的直線同時垂直于同一個平面,則這兩條直線互相平行;④若兩個不同的平面同時垂直于第三個平面,則這兩個平面互相垂直.其中所有正確命題的序號為________.15.已知空間向量,,若,則______16.已知點,,,則外接圓的圓心坐標為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在棱長為2的正方體中,E,F(xiàn)分別為AB,BC上的動點,且.(1)求證:;(2)當時,求點A到平面的距離.18.(12分)已知等差數(shù)列的公差為2,且,,成等比數(shù)列.(1)求的通項公式;(2)求數(shù)列的前項和.19.(12分)已知三條直線:,:,:(是常數(shù)),.(1)若,,相交于一點,求的值;(2)若,,不能圍成一個三角形,求的值:(3)若,,能圍成一個直角三角形,求的值.20.(12分)已知向量,,且.(1)求滿足上述條件的點M(x,y)的軌跡C的方程;(2)設(shè)曲線C與直線y=kx+m(k≠0)相交于不同的兩點P,Q,點A(0,1),當|AP|=|AQ|時,求實數(shù)m的取值范圍.21.(12分)已知圓C的圓心在直線上,且過點.(1)求圓C的方程;(2)若圓C與直線交于A,B兩點,且,求m的值.22.(10分)已知公差不為0的等差數(shù)列的前項和為,且,,成等比數(shù)列,且.(1)求的通項公式;(2)若,求數(shù)列的前n項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù),利用等比數(shù)列的通項公式求解.【詳解】因為,所以,則,解得,所以.故選:B2、C【解析】先考慮最后位置必為奧運宣傳廣告,再將另一奧運廣告插入3個商業(yè)廣告之間,最后對三個商業(yè)廣告全排列,即可求解.【詳解】先考慮最后位置必為奧運宣傳廣告,有種,另一奧運廣告插入3個商業(yè)廣告之間,有種;再考慮3個商業(yè)廣告的順序,有種,故共有種.故選:C.3、B【解析】設(shè),,根據(jù)向量的數(shù)量積得到,與橢圓方程聯(lián)立,即可得到答案;【詳解】設(shè),,,與橢圓聯(lián)立,解得:,故選:B4、C【解析】設(shè)直線的方程為,其中,設(shè)點、、,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,求出、,根據(jù)條件可求得的值,即可得出直線的斜率.【詳解】拋物線的焦點為,設(shè)直線的方程為,其中,設(shè)點、、,聯(lián)立可得,,,所以,,,,直線的斜率為,則直線的斜率為,所以,,因為,則,因為,解得,因此,直線的斜率為.故選:C.5、C【解析】由方程表示雙曲線知,又雙曲線的虛軸長是實軸長的2倍,所以,即,所以故選C.考點:雙曲線的標準方程與簡單幾何性質(zhì).6、B【解析】由公切線條數(shù)得兩圓外切,由此可得的關(guān)系,從而點在以原點為圓心,4為半徑的圓上,記,由求得的最小值,平方后即得結(jié)論【詳解】圓標準方程為,,半徑為,圓標準方程為,,半徑為,兩圓有三條公切線,則兩圓外切,所以,即,點在以原點為圓心,4為半徑的圓上,記,,所以,所以的最小值為故選:B7、C【解析】利用空間向量垂直的坐標表示計算即可得解【詳解】因向量,,且,則,解得,所以實數(shù)等于.故選:C8、D【解析】在四面體中,取定一組基底向量,表示出,,再借助空間向量數(shù)量積計算作答.【詳解】四面體所有棱長均為2,則向量不共面,兩兩夾角都為,則,因點E,F(xiàn)分別為棱AB,CD的中點,則,,,所以.故選:D9、C【解析】作垂直準線于,垂直準線于,作于,結(jié)合拋物線定義得出斜率為可求.【詳解】如圖:作垂直準線于,垂直準線于,作于,因為,,,由拋物線的定義可知:,,,所以,直線斜率為:.故選:C.10、B【解析】先求出的坐標,然后由可得,再根據(jù)向量數(shù)量積的坐標運算求解即可.【詳解】因為,,所以,因為,所以,即,解得.故選:B11、B【解析】根據(jù)對數(shù)函數(shù)的性質(zhì)判斷A,根據(jù)指數(shù)函數(shù)的性質(zhì)判斷B,根據(jù)正弦函數(shù)的性質(zhì)及誘導公式判斷C,根據(jù)余弦函數(shù)的性質(zhì)及誘導公式判斷D;【詳解】解:對于A:因為,,,故A錯誤;對于B:因為在定義域上單調(diào)遞減,因為,所以,又,,因為在上單調(diào)遞增,所以,所以,所以,故B正確;對于C:因為在上單調(diào)遞減,因為,所以,又,所以,故C錯誤;對于D:因為在上單調(diào)遞減,又,所以,又,所以,故D錯誤;故選:B12、C【解析】根據(jù)直線平行求解即可.【詳解】因為直線與直線平行,所以,即,經(jīng)檢驗,滿足題意.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、(答案不唯一)【解析】根據(jù)橢圓的標準方程,以及分析即可【詳解】由題可知橢圓的形式應為(,且),可取故答案為:(答案不唯一)14、②③【解析】由垂直于同一直線的兩直線的位置關(guān)系判斷①;由直線與平面垂直的性質(zhì)判斷②③;由空間中平面與平面的位置關(guān)系判斷④【詳解】①若兩條不同的直線垂直于第三條直線,則這兩條直線有三種位置關(guān)系:平行、相交或異面,故錯誤;②根據(jù)線面垂直的性質(zhì)知,若兩個不同的平面垂直于一條直線,則這兩個平面互相平行,故正確;③由線面垂直的性質(zhì)知:若兩條不同的直線同時垂直于同一個平面,則這兩條直線互相平行,故正確④若兩個不同的平面同時垂直于第三個平面,這兩個平面相交或平行,故錯誤.其中所有正確命題的序號為②③故答案為:②③15、7【解析】根據(jù)題意,結(jié)合空間向量的坐標運算,即可求解.【詳解】根據(jù)題意,易知,因為,所以,即,解得故答案為:716、【解析】求得的垂直平分線的方程,在求得垂直平分線的交點,則問題得解.【詳解】線段中點坐標為,線段斜率為,所以線段垂直平分線的斜率為,故線段的垂直平分線方程為,即.線段中點坐標為,線段斜率為,所以線段垂直平分線的斜率為,故線段的垂直平分線方程為,即.由.所以外接圓的圓心坐標為.故答案為:.【點睛】本題考查直線方程的求解,直線交點坐標的求解,屬綜合基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)如圖,以為軸,為軸,為軸建立空間直角坐標系,利用空間向量法分別求出和,再證明即可;(2)利用空間向量的數(shù)量積求出平面的法向量,結(jié)合求點到面距離的向量法即可得出結(jié)果.【小問1詳解】證明:如圖,以為軸,為軸,為軸,建立空間直角坐標系,則,,,,所以,,所以,故,所以;【小問2詳解】當時,,,,,則,,,設(shè)是平面的法向量,則由,解得,取,得,設(shè)點A到平面的距離為,則,所以點A到平面的距離為.18、(1)(2)【解析】(1)由,,成等比數(shù)列和,可得,解方程求出,從而可求出的通項公式,(2)由(1)可得,然后利用裂項相消法可求出【小問1詳解】因為等差數(shù)列的公差為2,所以又因為成等比數(shù)列,所以,解得,所以.【小問2詳解】由(1)得,所以.19、(1)(2)或或(3)或【解析】(1)由二條已知直線求交點,代入第三條直線即可;(2)不能圍成一個三角形,過二條已知直線的交點,或者與它們平行;(3)由直線互相垂直得,斜率之積為-1.【小問1詳解】顯然,相交,由得交點,由點代入得所以當,,相交時,.【小問2詳解】過定點,因為,,不能圍成三角形,所以,或與平行,或與平行,所以,或,或.【小問3詳解】顯然與不垂直,所以,且或所以的值為或20、(1)+y2=1;(2).【解析】(1)應用向量垂直的坐標表示得x2+3y2=3,即可寫出M的軌跡C的方程;(2)由直線與曲線C交于不同的兩點P(x1,y1),Q(x2,y2),設(shè)直線y=kx+m(k≠0),聯(lián)立方程整理所得方程有,且由根與系數(shù)關(guān)系用m,k表示x1+x2,x1x2,若N為PQ的中點結(jié)合|AP|=|AQ|知PQ⊥AN可得m、k的等量關(guān)系,結(jié)合即可求m的范圍.【詳解】(1)∵,即,∴,即有x2+3y2=3,即點M(x,y)的軌跡C的方程為+y2=1.(2)由得(1+3k2)x2+6kmx+3(m2-1)=0.∵曲線C與直線y=kx+m(k≠0)相交于不同的兩點,∴Δ=(6km)2-12(1+3k2)(m2-1)=12(3k2-m2+1)>0,即3k2-m2+1>0①,且x1+x2=,x1x2=.設(shè)P(x1,y1),Q(x2,y2),線段PQ的中點N(x0,y0),則.∵|AP|=|AQ|,即知PQ⊥AN,設(shè)kAN表示直線AN的斜率,又k≠0,∴kANk=-1.即·k=-1,得3k2=2m-1②,而3k2>0,有m>.將②代入①得2m1m2+1>0,即2m<0,解得0<m<2,∴m的取值范圍為.【點睛】思路點睛:1、由向量垂直,結(jié)合其坐標表示得到關(guān)于x,y的方程,寫出曲線C的標準方程即可.2、由直線與曲線C相交,聯(lián)立方程有,由|AP|=|AQ|得直線的垂直關(guān)系,即斜率之積為-1,進而可求參數(shù)的范圍.21、(1)(2)或【解析】(1)由已知設(shè)圓C的方程為,點代入計算即可得出結(jié)果.(2)由已知可得圓心C到直線的距離,利用點到直線的距離公式計算即可求得值.【小問1詳解】設(shè)圓心坐

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論