版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
信號與系統(tǒng)SignalsandSystems吉林大學Propertiesofthez-Transform——LinearityIff1(k)
F1(z),
1<
z
<
1,f2(k)
F2(z),
2<
z
<
2,thenLinearityExample:Iff1(k)
F1(z),
1<
z
<
1,f2(k)
F2(z),
2<
z
<
2,thenLinearityExample:信號與系統(tǒng)SignalsandSystems吉林大學Propertiesofthez-Transform——TimeShiftingTimeShiftingExample:Bilateralz-TransformIff(k)
F(z),
<
z
<
,thenwheremisapositiveinteger.TimeShiftingProof:Unilateralz-Transform——RightshiftIff(k)
F(z),
z
>
,thenwheremisapositiveinteger.TimeShiftingUnilateralz-Transform——RightshiftIff(k)=0,k<0,thenExample:Iff(k)
F(z),
z
>
,thenwheremisapositiveinteger.TimeShiftingUnilateralz-Transform——LeftshiftIff(k)
F(z),
z
>
,thenwheremisapositiveinteger.Proof:TimeShiftingUnilateralz-Transform——LeftshiftIff(k)
F(z),
z
>
,thenwheremisapositiveinteger.Example:
(k+1)信號與系統(tǒng)SignalsandSystems吉林大學Propertiesofthez-Transform——Scalinginthez-DomainScalinginthez-DomainProof:Iff(k)
F(z),R1<|z|<R2
,thenaisanonzerorealorcomplexnumber.ROCofF(z):ROCof
:Scalinginthez-DomainIff(k)
F(z),R1<|z|<R2
,thenaisanonzerorealorcomplexnumber.Example:
aksin(
k)
(k),0<a<1Scalinginthez-DomainIff(k)
F(z),R1<|z|<R2
,thenaisanonzerorealorcomplexnumber.Example:(-1)k
(k)信號與系統(tǒng)SignalsandSystems吉林大學Propertiesofthez-Transform——ConvolutionConvolutionProof:Iff1(k)
F1(z),
1<z<
1,f2(k)
F2(z),
2<z<
2,thenConvolutionIff1(k)
F1(z),
1<z<
1,f2(k)
F2(z),
2<z<
2,thenExample:(k+1)
(k)LTIsystems:信號與系統(tǒng)SignalsandSystems吉林大學Propertiesofthez-Transform——DifferentiationandIntegralinthez-DomainDifferentiationinthez-DomainProof:Iff(k)
F(z),
<
z
<
,then
wherekisanypositiveinteger.Differentiationinthez-DomainIff(k)
F(z),
<
z
<
,then
wherekisanypositiveinteger.Example:Ifa=1,thenDifferentiationinthez-DomainIff(k)
F(z),
<
z
<
,then
wherekisanypositiveinteger.Integralinthez-DomainProof:Iff(k)
F(z),
<
z
<
,then
(misaninteger,andk+m>0)Integralinthez-DomainIff(k)
F(z),
<
z
<
,then
(misaninteger,andk+m>0)Example:Integralinthez-DomainIff(k)
F(z),
<
z
<
,then
(misaninteger,andk+m>0)m=0,k>0:信號與系統(tǒng)SignalsandSystems吉林大學Propertiesofthez-Transform——Reflectioninthek-domainReflectioninthek-domainProof:Iff(k)
F(z),
<
z
<
,then
Example:信號與系統(tǒng)SignalsandSystems吉林大學Propertiesofthez-Transform——SummationSummationProof:Iff(k)
F(z),
<
z
<
,then
Example:信號與系統(tǒng)SignalsandSystems吉林大學Propertiesofthez-Transform——Initial-ValueTheoremandFinal-ValueTheoremInitial-ValueTheoremProof:Iff(k)=0,k<0,andf(k)
F(z),then
Example:0Thez-transformofacausalsequencef(k)isfindf(0).Final-ValueTheoremProof:Iff(k)=0,k<0,f(k)
F(z),a<
z<,0≤a<1,then
Final-ValueTheoremIff(k)=0,k<0,f(k)
F(z),a<
z<,0≤a<1,then
Example:f(k)=0,k<0. aisarealnumber,findf(
).Final-ValueTheorem√√××Final-ValueTheoremIff(k)=0,k<0,f(k)
F(z),a<
z<,0≤a<1,then
Example:f(k)=0,k<0.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 泰安房屋買賣合同交易稅費
- 簡約勞務分包合同樣本
- 備件購買合同模板
- 水表采購合同條件
- 建筑裝飾用鋁合金型材采購合同
- 展會服務合同樣本簡單
- 批發(fā)石塊交易合同
- 公共場所地板采購合同
- 婚介公司服務合同
- 文藝演出音樂會合同
- IPv6地址規(guī)劃策略
- 新視野大學英語(第四版)讀寫教程1(思政智慧版)課件 Unit 6 Winning is not everything Section B
- 學校教研工作組織機構(5篇范例)
- 2022-2023學年湘少版(三起)六年級英語上冊期末測試題含答案
- 消防救援-低溫雨雪冰凍惡劣天氣條件下災害防范及救援行動與安全
- 2023年護士資格考試高分備考題庫大全(單選5000題)-第1部分(700題)
- 土地利用現(xiàn)狀分類-
- 《汽車傳感器》課件
- 中醫(yī)內(nèi)科學課件-癲狂
- 分享會之蹲馬步管理工坊
-
評論
0/150
提交評論