版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省番禺區(qū)2025屆數(shù)學(xué)高二上期末質(zhì)量檢測(cè)模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)變量滿足約束條件,則的最大值為()A.0 B.C.3 D.42.已知函數(shù),則曲線在點(diǎn)處的切線方程為()A. B.C. D.3.過橢圓+=1左焦點(diǎn)F1引直線交橢圓于A、B兩點(diǎn),F(xiàn)2是橢圓的右焦點(diǎn),則△ABF2的周長(zhǎng)是()A.20 B.18C.10 D.164.已知數(shù)列的前n項(xiàng)和為,,,則()A. B.C. D.5.已知拋物線:的焦點(diǎn)為,為上一點(diǎn)且在第一象限,以為圓心,為半徑的圓交的準(zhǔn)線于,兩點(diǎn),且,,三點(diǎn)共線,則()A.2 B.4C.6 D.86.已知數(shù)列是首項(xiàng)為,公差為1的等差數(shù)列,數(shù)列滿足.若對(duì)任意的,都有成立,則實(shí)數(shù)的取值范圍是()A., B.C., D.7.已知直線與平行,則a的值為()A.1 B.﹣2C. D.1或﹣28.執(zhí)行如圖所示的程序框圖,若輸入的的值為3,則輸出的的值為()A.3 B.6C.9 D.129.若拋物線與直線:相交于兩點(diǎn),則弦的長(zhǎng)為()A.6 B.8C. D.10.如圖,在直三棱柱中,AB=BC,,若棱上存在唯一的一點(diǎn)P滿足,則()A. B.1C. D.211.已知等比數(shù)列滿足,,則數(shù)列前6項(xiàng)的和()A.510 B.126C.256 D.51212.已知、是橢圓和雙曲線的公共焦點(diǎn),是它們的一個(gè)公共點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,則()A.2 B.3C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.若球的大圓的面積為,則該球的表面積為___________.14.點(diǎn)P是棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1的底面A1B1C1D1上一點(diǎn),則的取值范圍是__.15.如圖,在四棱錐中,平面,底面是菱形,且,則異面直線與所成的角的余弦值為______,點(diǎn)到平面的距離等于______.16.滕王閣,江南三大名樓之一,因初唐詩人王勃所作《滕王閣序》中“落霞與孤鶩齊飛,秋水共長(zhǎng)天一色”而名傳千古,流芳后世.如圖,在滕王閣旁地面上共線的三點(diǎn),,處測(cè)得閣頂端點(diǎn)的仰角分別為,,.且米,則滕王閣高度___________米.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,側(cè)面為等邊三角形,,,平面平面,為的中點(diǎn).(1)求證:;(2)若,求二面角的大小.18.(12分)已知拋物線的焦點(diǎn)為F,傾斜角為45°的直線m過點(diǎn)F,若此拋物線上存在3個(gè)不同的點(diǎn)到m的距離為,求此拋物線的準(zhǔn)線方程19.(12分)已知圓,直線過定點(diǎn).(1)若與圓相切,求的方程;(2)若與圓相交于兩點(diǎn),且,求此時(shí)直線的方程.20.(12分)已知,,其中.(1)求的值;(2)設(shè)(其中、為正整數(shù)),求的值.21.(12分)等差數(shù)列前n項(xiàng)和為,且(1)求通項(xiàng)公式;(2)記,求數(shù)列的前n項(xiàng)和22.(10分)如圖,在直三棱柱中,,,,為的中點(diǎn),點(diǎn),分別在棱,上,,.(1)求點(diǎn)到直線的距離(2)求平面與平面夾角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】先畫出約束條件所表示的平面區(qū)域,然后根據(jù)目標(biāo)函數(shù)的幾何意義,即可求出目標(biāo)函數(shù)的最大值.【詳解】解:滿足約束條件的可行域如下圖所示:由,可得,因?yàn)槟繕?biāo)函數(shù),即,表示斜率為,截距為的直線,由圖可知,當(dāng)直線經(jīng)過時(shí)截距取得最小值,即取得最大值,所以的最大值為,故選:A.2、A【解析】求出函數(shù)的導(dǎo)函數(shù),再求出,然后利用導(dǎo)數(shù)的幾何意義求解作答.【詳解】函數(shù),求導(dǎo)得:,則,而,于是得:,即,所以曲線在點(diǎn)處的切線方程為.故選:A3、A【解析】根據(jù)橢圓的定義求得正確選項(xiàng).【詳解】依題意,根據(jù)橢圓的定義可知,三角形的周長(zhǎng)為.故選:A4、D【解析】根據(jù)給定遞推公式求出即可計(jì)算作答.【詳解】因數(shù)列的前n項(xiàng)和為,,,則,,,所以.故選:D5、B【解析】根據(jù),,三點(diǎn)共線,結(jié)合點(diǎn)到準(zhǔn)線的距離為2,得到,再利用拋物線的定義求解.【詳解】如圖所示:∵,,三點(diǎn)共線,∴是圓的直徑,∴,軸,又為的中點(diǎn),且點(diǎn)到準(zhǔn)線的距離為2,∴,由拋物線的定義可得,故選:B.6、D【解析】由等差數(shù)列通項(xiàng)公式得,再結(jié)合題意得數(shù)列單調(diào)遞增,且滿足,,即,再解不等式即可得答案.【詳解】解:根據(jù)題意:數(shù)列是首項(xiàng)為,公差為1的等差數(shù)列,所以,由于數(shù)列滿足,所以對(duì)任意的都成立,故數(shù)列單調(diào)遞增,且滿足,,所以,解得故選:7、A【解析】根據(jù)題意可得,解之即可得解.【詳解】解:因?yàn)橹本€與平行,所以,解得.故選:A.8、A【解析】模擬執(zhí)行程序框圖,根據(jù)輸入數(shù)據(jù),即可求得輸出數(shù)據(jù).【詳解】當(dāng)時(shí),不滿足,故,即輸出的的值為.故選:.9、B【解析】由題得拋物線的焦點(diǎn)坐標(biāo)為剛好在直線上,再聯(lián)立直線和拋物線的方程,利用韋達(dá)定理和拋物線的定義求解.【詳解】解:由題得.由題得拋物線的焦點(diǎn)坐標(biāo)為剛好在直線上,設(shè),聯(lián)立直線和拋物線方程得,所以.所以.故選:B10、D【解析】設(shè),構(gòu)建空間直角坐標(biāo)系,令且,求出,,再由向量垂直的坐標(biāo)表示列方程,結(jié)合點(diǎn)P的唯一性有求參數(shù)a,即可得結(jié)果.【詳解】由題設(shè),構(gòu)建如下圖空間直角坐標(biāo)系,若,則,,且,所以,,又存在唯一的一點(diǎn)P滿足,所以,則,故,可得,此時(shí),所以.故選:D11、B【解析】設(shè)等比數(shù)列的公比為,由題設(shè)條件,求得,再結(jié)合等比數(shù)列的求和公式,即可求解.【詳解】設(shè)等比數(shù)列的公比為,因?yàn)?,,可得,解得,所以?shù)列前6項(xiàng)的和.故選:B.【點(diǎn)睛】本題主要考查了等比數(shù)列的通項(xiàng)公式,以及等比數(shù)列的前項(xiàng)和公式的應(yīng)用,其中解答中熟記等比數(shù)列的通項(xiàng)公式和求和公式,準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查推理與運(yùn)算能力.12、C【解析】依據(jù)橢圓和雙曲線定義和題給條件列方程組,得到關(guān)于橢圓的離心率和雙曲線的離心率的關(guān)系式,即可求得的值.【詳解】設(shè)橢圓的長(zhǎng)軸長(zhǎng)為,雙曲線的實(shí)軸長(zhǎng)為,令,不妨設(shè)則,解之得代入,可得整理得,即,也就是故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)球的半徑為,則球的大圓的半徑為,根據(jù)圓的面積公式列方程求出,再由球的表面積公式即可求解.【詳解】設(shè)球的半徑為,則球的大圓的半徑為,所以球的大圓的面積為,可得,所以該球的表面積為.故答案為:.14、[﹣,0]【解析】建立空間直角坐標(biāo)系,設(shè)出點(diǎn)P的坐標(biāo)為(x,y,z),則由題意可得0≤x≤1,0≤y≤1,z=1,計(jì)算?x2﹣x,利用二次函數(shù)的性質(zhì)求得它的值域即可【詳解】解:以點(diǎn)D為原點(diǎn),以DA所在的直線為x軸,以DC所在的直線為y軸,以DD1所在的直線為z軸,建立空間直角坐標(biāo)系,如圖所示;則點(diǎn)A(1,0,0),C1(0,1,1),設(shè)點(diǎn)P的坐標(biāo)為(x,y,z),由題意可得0≤x≤1,0≤y≤1,z=1;∴(1﹣x,﹣y,﹣1),(﹣x,1﹣y,0),∴?x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y,由二次函數(shù)的性質(zhì)可得,當(dāng)x=y(tǒng)時(shí),?取得最小值為;當(dāng)x=0或1,且y=0或1時(shí),?取得最大值為0,則?的取值范圍是[,0]故答案為:[,0]【點(diǎn)睛】本題主要考查了向量在幾何中的應(yīng)用與向量的數(shù)量積運(yùn)算問題,是綜合性題目15、①.②.【解析】因?yàn)榈酌媸橇庑?可得,則異面直線與所成的角和與所成的角相等,即可求得異面直線與所成的角的余弦值.在底面從點(diǎn)向作垂線,求證垂直平面,即可求得答案.【詳解】根據(jù)題意畫出其立體圖形:如圖底面是菱形,則異面直線與所成的角和直線與所成的角相等平面,平面又,底面是菱形即故:異面直線與所成的角的余弦值為:在底面從點(diǎn)向作垂線平面,平面,平面故是到平面的距離故答案為:,.【點(diǎn)睛】本題考查了求異面直線的夾角和點(diǎn)到面距離,解題關(guān)鍵是掌握將求異面直線夾角轉(zhuǎn)化為共面直線夾角的解法,考查了分析能力和推理能力,屬于基礎(chǔ)題.16、【解析】設(shè),由邊角關(guān)系可得,,,在和中,利用余弦定理列方程,結(jié)合可解得的值,進(jìn)而可得長(zhǎng).【詳解】設(shè),因?yàn)?,,,所以,,?在中,,即①.,在中,,即②,因?yàn)?,所以①②兩式相加可得:,解得:,則,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)取中點(diǎn),由面面垂直和線面垂直性質(zhì)可證得,結(jié)合,由線面垂直判定可證得平面,由線面垂直性質(zhì)可得結(jié)論;(2)以為坐標(biāo)原點(diǎn)可建立空間直角坐標(biāo)系,由向量數(shù)乘運(yùn)算可求得點(diǎn)坐標(biāo),利用二面角的向量求法可求得結(jié)果.【小問1詳解】取中點(diǎn),連接,為等邊三角形,為中點(diǎn),,平面平面,平面平面,平面,平面,又平面,;分別為中點(diǎn),,又,,平面,,平面,又平面,.【小問2詳解】以為坐標(biāo)原點(diǎn),為軸可建立如圖所示空間直角坐標(biāo)系,則,,,,,設(shè),則,,由得:,解得:,即,,設(shè)平面的法向量,則,令,解得:,,;又平面的一個(gè)法向量,;由圖象知:二面角為銳二面角,二面角的大小為.18、【解析】設(shè)出直線m的方程,利用方程組聯(lián)立、一元二次方程根的判別式求出與直線m平行的拋物線的切線方程,結(jié)合平行線間距離公式進(jìn)行求解即可.【詳解】拋物線的焦點(diǎn)坐標(biāo)為:,設(shè)直線m為,設(shè)為與拋物線相切,聯(lián)立直線與拋物線方程,化簡(jiǎn)整理可得,,則,解得,且,故兩平行線間的距離,解得,故所求的準(zhǔn)線方程為19、(1)或;(2)或.【解析】(1)由圓的方程可得圓心和半徑,當(dāng)直線斜率不存在時(shí),知與圓相切,滿足題意;當(dāng)直線斜率存在時(shí),利用圓心到直線距離等于半徑可構(gòu)造方程求得,由此可得方程;(2)當(dāng)直線斜率不存在時(shí),知與圓相切,不合題意;當(dāng)直線斜率存在時(shí),利用垂徑定理可構(gòu)造方程求得,由此可得方程.【小問1詳解】由圓的方程知:圓心,半徑;當(dāng)直線斜率不存在,即時(shí),與圓相切,滿足題意;當(dāng)直線斜率存在時(shí),設(shè),即,圓心到直線距離,解得:,,即;綜上所述:直線方程為或;【小問2詳解】當(dāng)直線斜率不存在,即時(shí),與圓相切,不合題意;當(dāng)直線斜率存在時(shí),設(shè),即,圓心到直線距離,,解得:或,直線的方程為或.20、(1);(2).【解析】(1),,寫出的展開式通項(xiàng),由可得出關(guān)于的方程,解出的值,再利用賦值法可求得所求代數(shù)式的值;(2)寫出的展開式,求出、的值,即可求得的值.【小問1詳解】解:設(shè),,的展開式通項(xiàng)為,所以,,即,,解得,所以,.【小問2詳解】解:,,,因此,21、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)已知條件求,利用等差數(shù)列的通項(xiàng)公式可求得數(shù)列的通項(xiàng)公式.(2)求得,利用裂項(xiàng)相消法即可求得.【小問1詳解】設(shè)等差數(shù)列的公差為,由,解得,所以,故數(shù)列的通項(xiàng)公式;【小問2詳解】由(1)得:,所以,所以.22、(1);(2).【解析】(1)由直棱柱的性質(zhì)及勾股定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國(guó)腐蝕抑制劑行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年電感容阻測(cè)量?jī)x器項(xiàng)目可行性研究報(bào)告
- 2025至2031年中國(guó)熱壓墊肩行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年拋釉磚母模項(xiàng)目可行性研究報(bào)告
- 2025至2031年中國(guó)地下金屬探測(cè)器行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2031年中國(guó)絲棉罩杯行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年三角底荷花筆筒項(xiàng)目可行性研究報(bào)告
- 2025至2030年風(fēng)箏用線項(xiàng)目投資價(jià)值分析報(bào)告
- 2025至2030年中國(guó)鉑金吊墜數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)透明薄紗布數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 動(dòng)畫課件教學(xué)教學(xué)課件
- 灌籃高手培訓(xùn)課件
- 小學(xué)生心理健康講座5
- 綿陽市高中2022級(jí)(2025屆)高三第一次診斷性考試(一診)數(shù)學(xué)試卷(含答案逐題解析)
- 貴州省房屋建筑和市政工程標(biāo)準(zhǔn)監(jiān)理電子招標(biāo)文件(2023年版)
- 高級(jí)職業(yè)培訓(xùn)師(三級(jí))職業(yè)資格鑒定考試題及答案
- 小學(xué)英語800詞分類(默寫用)
- 真實(shí)世界研究指南 2018
- JBT 7946.3-2017 鑄造鋁合金金相 第3部分:鑄造鋁合金針孔
- 2024年燃?xì)廨啓C(jī)值班員技能鑒定理論知識(shí)考試題庫-上(單選題)
- 中學(xué)校園安保服務(wù)投標(biāo)方案
評(píng)論
0/150
提交評(píng)論